首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoscience and nanotechnology represent scientific‐technical areas that in less than twenty years have gone from being in the hands of a small group of researchers who glimpsed their great potential, to constitute one of the recognized pillars of scientific progress for the next decades. This paper illustrates how the irruption of the nanotechnologies will directly affect human beings by substantially improving diagnosis and treatment of diseases as well as our capacities to interact with our surroundings. Governments around the world have realized the important role that nanotechnology deserves, and during the last decade budgets allocated to research and development in nanotechnology have continuously increased. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
纳米光子学,产生于纳米技术和光子学的交界处,处理光和物质在纳米尺度的相互作用,可以被用来产生新的效果和发展纳米尺度的器件。世界在迎接未来能源需求方面正面临巨大挑战。纳米光子学为太阳能转换提供了新的进展。在太阳能转换领域,我们正加速开展新的基于纳米光子学让太阳光子在整个光谱范围从紫外到红外有效率地被吸收和转换,并且有效率地转换为电能方面的研究(比如直接或者电化学的转换)。纳米技术也为热电和能量储存方面的研究提供了新的途径,我们正追求把它们和太阳能获取整合在一起从而提供广泛的能源解决方案。  相似文献   

3.
This study aims at examining how nanotechnology is covered in Turkish print media. As an initial part of this objective, a total of 76 articles derived from a widespread national newspaper were analyzed based on the framing theory. These articles were analyzed using both quantitative and qualitative traditions of content analysis; however, the quantitative method was the primary form of investigation. The analyses showed that the first news about nanotechnology appeared in 1991 and the frequencies of articles had increased in the subsequent years; but the number of articles had decreased after a while. The findings demonstrated a remarkable positive tone in the articles; there were only a few articles in negative tones and these articles were published in the first years of nanotechnology news. It was further found that the articles were mostly concerned with the implementations of nanotechnology, such as research and education centers, medical, and electronics. The study also investigated the presentation style of nanotechnology news. In other words, it investigated how the articles were framed. The results showed that the articles were mostly framed with scientific researches or discoveries and future expectations.  相似文献   

4.
High-entropy/multicomponent alloy (HEA/MCA) has received significant research attention in the last decade. There is a dearth of data-driven works dedicated to assessing and visualizing the HEA/MCA literature from a global perspective. To this end, we present the first bibliometric literature analysis of more than 3500 HEA/MCA articles, published between 2004 and 2021, in the Scopus database. We identify the most prolific authors, their collaborators, institutions, and most prominent research outlet. Co-occurrence networks of keywords are mapped and analyzed. A steep rise in research outputs is observed from 2013, when the number of annual publications doubled the previous years. The top five preferred research outlets include Journal of Alloys and Compounds, Materials Science and Engineering A, Scripta Materialia, Intermetallics, and Acta Materialia. Most of these publications emanate from researchers and institutions within China, USA, and Germany, although international scientific collaboration among them is lacking. Research gaps and future research directions are proposed, based on co-occurrence frequencies of author keywords. Finally, a brief systematic review of emerging applications, covering hydrogen storage, additive manufacturing, catalysis, and superconductivity, is undertaken. This work provides an important comprehensive reference guide for researchers to deepen their knowledge of the field and pursue new research directions.  相似文献   

5.
The number of publications on laser ablation and nanoparticle generation in liquids increased by the factor of 15 in the last decade, with comparable high impact of the most cited articles in this field. A nearly unlimited variety of nanoparticle material, liquid matrix, and conjugative agent can be combined to a huge variety of colloids within a few minutes of laser processing. However, this diversification makes it hard to identify main research directions without a comprehensive literature overview. This investigation evaluates the impact and structure of the literature in this field tagging most prolific subjects and articles. Using an optimized search algorithm, the data sets derived from Science Citation Index (1998–2008) allow for statements on publication subject clusters, impact of articles and journals, as well as mapping global spots of activities.  相似文献   

6.
In the context of CO2 neutral and regenerative energy production, the field of thermoelectrics has shifted more and more into the focus of scientific research in the last few years. Particularly a lot of research projects were started in the field of energy autarkic sensor technology and the so called energy harvesting, i.e. the recycling of otherwise lost energy. A potentially huge industrial branch for thermoelectric applications is the automotive industry with a main emphasis on generating electricity out of the waste heat of combustion engines with the help of thermoelectric generators or using Peltier cooling to replace conventional air conditioning in the passenger compartment. In addition, many niche applications are possible, e.g. as sensors for measuring the air pressure of tires etc. The applications of thermoelectric devices are very versatile. We analyse the potential of the state‐of‐the‐art thermoelectric materials SiGe, PbTe, Bi2Te3, FeSi2 and potentially ZnO with respect to employment in four types of applications, classified by mobile vs stationary and specialized vs. mass application. The selection criteria comprise efficiency, materials availability, costs, environmental friendliness and toxicity. Based on these criteria, a decision matrix for choosing the appropriate material system for a specific application is defined. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981–1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., “carbon nanotube”) shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals is the closest to nano research published in condensed matter and applied physics journals.  相似文献   

9.
Advent of nanotechnology has generated huge interest in application of carbon-based nanomaterials as a possible replacement for conventionally used graphite as anode of Li-ion batteries. Future Li-ion batteries demand high capacity, energy, power, and better safety, while graphite falls short of fulfilling all these necessities. Inspired by high conductivity, flexibility, surface area, and Li-ion insertion ability, a number of nano carbon materials, individually or as a composite, have been studied in detail to identify the best suitable material for next-generation energy storage devices. Many of these nano-C-based structures hold good promise, although issues like density of nanomaterials and scalability are yet to be addressed with confidence. This article aims to summarize the major research directions of nano-C materials in anodic application of Li-ion batteries and proposes possible future research directions in this widely studied field.  相似文献   

10.
During the last few decades, many scientific research areas have experienced remarkable progress in nanoscience and nanotechnology. In an even rather wider field, complex and smart materials are also often isolated as small crystallites, and they present serious difficulties in terms of being synthesized without fluctuations of their compositions or crystalline orientations. This particular interest in material characterization at rather small scales has considerably affected the design, manufacturing, and performance of advanced scientific instruments. In fact, when characterizing advanced materials, progress frequently refers to a new area of knowledge, to the need of seeing, measuring, and understanding objects at the nano- and mesoscopic scale.  相似文献   

11.
Current developments in nanostructured materials and nanotechnology will have profound impact in many areas such as energy technologies and biomedical applications. These include solar cells, energy storage, environmental control, tissue engineering, bioprobe, biomarking, cancer diagnosis, cancer therapy, and drug delivery. Our recent work covers a wide range of nanomaterials research for a variety of applications including to produce organic-inorganic nanocomposites which will be used in for constructing light emitting diodes, photovoltaic cells, future organic solar cells etc, biomedicine and photocatalytic. In this article the chief scientific and technical aspects of nanotechnology are introduced and some of its potential applications have been discussed.  相似文献   

12.
Over the last decade social scientific researchers have examined how the public perceives risks associated with nanotechnology. The body of literature that has emerged has been methodologically diverse. The findings have confirmed that some publics perceive nanotechnology as riskier than others, experts feel nanotechnology is less risky than the public does, and despite risks the public is optimistic about nanotechnology development. However, the extant literature on nanotechnology and risk suffers from sometimes widely divergent findings and has failed to provide a detailed picture of how the public actually feels about nanotechnology risks when compared to other risks. This study addresses the deficiencies in the literature by providing a comparative approach to gauging nanotechnology risks. The findings show that the public does not fear nanotechnology compared to other risks. Out of 24 risks presented to the participants, nanotechnology ranked 19th in terms of overall risk and 20th in terms of “high risk.”  相似文献   

13.
This article contributes to the growing study on the interactions between science and technology with China’s evidence in the field of nanotechnology, based on the database of United States Patent and Trademark Office. The analysis is focused during the period of 1991–2008, a rapid increasing period for the development of nanotechnology. Using the non-patent references cited by patents, we first investigate the science–technology connections in the context of Chinese nanotechnology, especially in institutional sectors and its application fields. Those patents, produced by academic researchers and directed towards basic scientific knowledge, generally cite more scientific references with a higher proportion of self-citations. It is interesting to find that patents contributed by collaborations between public organizations and corporations seldom contain scientific references. Following an interesting path on matching the data of publications and patents, we establish the author-inventor links in this emerging field. Author-inventors, who are co-active in publishing and patenting, are at the very top of the most prolific and highly cited researchers. Finally, we employ social network analysis to explore the characteristics of scientific and technological networks generated by co-authorship and co-invention data, to investigate the position and the role of patenting–publishing scientists in these research networks.  相似文献   

14.
Nanotechnology applications are rapidly expanding in various fields because of its unique qualities, such as a large surface area. Also, the synthetic changes can be utilized to alter nanomaterial to fit into specialized necessities. From the last decade there is a tremendous increase in the utilization of nanotechnology and nanomaterials in the petroleum industry. The current review's main objective is to summarize numerous nanoparticle applications in the field of petroleum, bio-fuel formation, and clean-up treatments of oil spill-related issues with their existing challenges that may help improve further research.  相似文献   

15.
A global scientific and societal endeavor was set in motion by the nanotechnology vision formulated in 1999 that inspired the National Nanotechnology Initiative (NNI) and other national and international R&D programs. Establishing foundational knowledge at the nanoscale has been the main focus of the nanotechnology research community in the first decade. As of 2009, this new knowledge underpinned about a quarter of a trillion dollars worldwide market, of which about $91 billion was in US products that incorporate nanoscale components. Nanotechnology is already evolving toward becoming a general-purpose technology by 2020, encompassing four generations of products with increasing structural and dynamic complexity: (1) passive nanostructures, (2) active nanostructures, (3) nanosystems, and (4) molecular nanosystems. By 2020, the increasing integration of nanoscale science and engineering knowledge and of nanosystems promises mass applications of nanotechnology in industry, medicine, and computing, and in better comprehension and conservation of nature. Nanotechnology’s rapid development worldwide is a testimony to the transformative power of identifying a concept or trend and laying out a vision at the synergistic confluence of diverse scientific research areas. This chapter provides a brief perspective on the development of the NNI since 2000 in the international context, the main outcomes of the R&D programs after 10 years, the governance aspects specific to this emerging field, lessons learned, and most importantly, how the nanotechnology community should prepare for the future.  相似文献   

16.
Nanotechnology research and applications have experienced rapid growth in recent years. We assessed the status of nanotechnology research worldwide by applying bibliographic, content map, and citation network analysis to a data set of about 200,000 nanotechnology papers published in the Thomson Science Citation Index Expanded database (SCI) from 1976 to 2004. This longitudinal study shows a quasi-exponential growth of nanotechnology articles with an average annual growth rate of 20.7% after 1991. The United States had the largest contribution of nanotechnology research and China and Korea had the fastest growth rates. The largest institutional contributions were from the Chinese Academy of Sciences and the Russian Academy of Sciences. The high-impact papers generally described tools, theories, technologies, perspectives, and overviews of nanotechnology. From the top 20 institutions, based on the average number of paper citations in 1976–2004, 17 were in the Unites States, 2 in France and 1 in Germany. Content map analysis identified the evolution of the major topics researched from 1976 to 2004, including investigative tools, physical phenomena, and experiment environments. Both the country citation network and the institution citation network had relatively high clustering, indicating the existence of citation communities in the two networks, and specific patterns in forming citation communities. The United States, Germany, Japan, and China were major citation centers in nanotechnology research with close inter-citation relationships.  相似文献   

17.
Korea has become one of the leading countries in nanotechnology along with the U.S., Japan, and Germany. Since 2001, the Korean Government established the ??Nanotechnology Development Plan.?? Since then, the trend in nanotechnology is steadily changing from fundamental research to application-driven technologies. In this paper, we examine the nanotechnology development and policy during the past decade, which includes the investments in R&D, infrastructure, and education. The Third Phase (2011?C2020) on clean nanotechnology convergence and integration in information, energy, and the environmental sector is also given. Furthermore, the program on long-term strategy dealing with sustainability in resolving future societal demand and plans for sustainable energy and environmental activities will be discussed in depth. The outcomes and national evaluations of research and education are also given.  相似文献   

18.
The organic–inorganic hybrid perovskite CH3NH3PbI3 is becoming an interesting material in the field of energy harvesting. This material is one of the cleanest and cheapest components in solar cells which is available in ample amounts. However, most of the previous research work was done on thin film of this material. In the present work we describe the preparation of a powder containing nanoparticles of CH3NH3PbI3 using a sonochemical method. Characterization of the product was done by various methods, such as HRTEM, FTIR, PL, DLS and XRD. The particles were found to be highly crystalline (tetragonal crystal structure), polygonal in shape and having diameters of 10–40 nm.  相似文献   

19.
During the last decade, research and development in the field of multi access edge computing (MEC) has rapidly risen to prominence. One of the factors propelling MEC’s evolution is the ability to deploy edge servers capable of providing both communication and computational services in close proximity to the mobile user terminal. MEC has been regarded as a potentially transformative technique for fifth-generation (5G) and beyond 5G (B5G) wireless communication systems, as well as a possible complement to traditional cloud computing. Additionally, unmanned aerial vehicles (UAVs) integrated with MEC will play a critical role by introducing an additional mobility based computational layer to provide more secure, efficient and faster services. UAV enabled MEC offers seamless connectivity, fulfilling the promise of 5G’s ubiquitous connectivity. Due to the enormous interest in UAV enabled MEC, there has been a tremendous increase in the number of published research articles in this domain; however, the research area still lacks a systematic study and categorization. We present a systematic literature review (SLR) on UAV enabled MEC, examining and analyzing data on the current state of the art using preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. To streamline our assessment, this study analyzes several research papers carefully selected through a multi-stage process satisfying the eligibility criteria defined in the paper. One of the SLR’s primary contributions is to broadly classify the research in the UAV enabled MEC domain into different categories including energy efficiency, resource allocation, security, architecture, and latency. We have identified key findings, technology, and pros and cons for the selected articles under each category. Additionally, we discuss the key open issues related to scalability and fairness, resource allocation and offloading optimization, service delivery with a focus on quality of experience (QoE) and quality of service (QoS), and standardization. Finally, we discuss several future research directions that would address the aforementioned issues and emerging use cases for UAV enabled MEC.  相似文献   

20.
《Current Applied Physics》2020,20(10):1150-1155
In the present work, lysine modified NaY0.78Er0.02Yb0.2F4 upconversion nanoparticles (UCNPs, positively charged) and lysine modified ZnSe:Mn2+ quantum dots (QDs, positively charged) are attached onto the surface of citrate reduced gold nanoparticles (AuNPs, negatively charged). The gold nanoparticles not only entangle the QDs and the UCNPs, through electrostatic interaction, but also tune the optical properties of UCNPs through the effect of surface plasmon resonance. The hybrid nanostructure gives green emission both through photoluminescence (under UV excitation) and through photon upconversion (under IR light excitation) process. The colour tuning is observed through variation in the size of QDs and through plasmonic effect of gold nanoparticles. In both the cases, the colour of emission gradually changes from green to red. The colour tunability and bi-modal photon conversion property of this material could be useful for its application in the field of bio-imaging and solar energy harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号