首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
将超分子自组装技术与色谱键合硅胶固定相制备技术相结合,采用γ-[(2,3)-环氧丙氧]丙基三甲氧基硅烷(KH-560)为偶联剂,首次将一种葫芦[6]脲单轮烷(CB6MR)键合到硅胶上,制备了一种新型的葫芦[6]脲单轮烷键合固定相(CB6MRBS)。通过元素分析、红外光谱和热分析对该固定相进行了结构表征。以中性、酸性、碱性化合物和二取代苯位置异构体等溶质为探测因子,分别在反相和正相色谱模式下对固定相的色谱性能和保留机理进行了研究。结果表明:CB6MRBS是一种多模式键合固定相,具有良好的正相和反相色谱性能,对位置异构体具有较高的识别能力,尤其是可有效地用于碱性化合物的分离分析。其保留机理存在氢键、静电、π-π和疏水作用等多种作用力机制,协同作用提高了CB6MRBS对溶质的分离选择性。由于CB6MR配体中含有酰胺基和众多极性羰基,CB6MRBS可能在络合色谱面有应用前景。  相似文献   

2.
在酸性条件下,将自制的葫芦[7]脲均匀地涂覆到102白色硅藻土担体上,制得葫芦[7]脲气相色谱固定相。 采用红外光谱、质谱、元素分析和热重分析表征了葫芦[7]脲在载体表面的结构。 利用相关探针测定了新固定相的麦氏常数,表征了其基本色谱性能。 考察了葫芦[7]脲气相色谱固定相填充柱对芳香烃、卤代烃、醇、酮、酯及硅氧烷的分离能力。 结果表明,葫芦[7]脲固定相热稳定性高,柱色谱性能稳定,对较广泛的化合物尤其对高沸点的酯类及硅氧烷类化合物显示出良好的色谱分离能力(7 min内分离),作为气相色谱固定相有较好的应用前景。 初步讨论了葫芦[7]脲固定相对上述化合物的分离机理。  相似文献   

3.
本文首次成功地制备和利用羟基葫芦[6]脲((HO)12CB[6])作填充柱气相色谱固定相。研究表明,羟基葫芦[6]脲固定相(PSP)具有较宽的操作柱温、高度的化学和热稳定性,对多种类型的化合物展示较高的色谱分离选择性,这包括烷烃、芳烃、醇类、酯类、酮类和胺类等多种化合物。新柱对一些二取代苯环芳族位置异构体有较强的分离能力。实验发现,羟基葫芦[6]脲固定相对日用花露水中复杂的挥发性成分有高效快速分离能力。同时,初步探讨了新固定相的色谱分离机理,发现羟基葫芦[6]脲对溶质的部分包结作用,而不是完全包结作用,有利于提高其色谱分离选择性和柱效。此外,在极速程序升温色谱中,该固定相低流失基线漂移小,有利于实现宽沸点范围复杂样品的快速气相色谱分离分析。  相似文献   

4.
王上文  李来生  易绣光 《色谱》2007,25(6):838-843
在反相和正相色谱模式下,研究了几种嘌呤衍生物在葫芦[6]脲单轮烷键合硅胶固定相上的高效液相色谱行为,并在反相模式下与ODS固定相进行了比较,考察了流动相中甲醇含量、流动相pH值和离子强度对嘌呤化合物保留的影响。研究结果表明:在反相模式下,嘌呤化合物与葫芦[6]脲单轮烷键合相之间存在多种相互作用,除疏水作用外,分离过程中还存在与ODS不同的色谱分离机制。在正相条件下,多作用力的色谱分离机制同样存在。葫芦[6]脲单轮烷键合相与溶质之间存在疏水、氢键、π-π和偶极-偶极等多种作用力,协同作用提高了固定相对嘌呤化合物的分离选择性。  相似文献   

5.
李来生  王上文  刘超  许丽丽 《化学学报》2007,65(17):1855-1862
甘脲是羟基葫芦[6]脲(HOCB6)的前体, 本文设计了一种在酸性条件下均匀涂渍固定液的新方法, 首次将甘脲和羟基葫芦[6]脲用作气相色谱固定相. 将甘脲和HOCB6填装成气相色谱填充柱后, 以烷烃、卤代烃、芳香烃、醇、酮、酯、酸、胺等物质为探针, 用复杂样品花露水对它们的色谱分离性能进行了比较研究. 结果表明, 甘脲和HOCB6 都是良好的气相色谱固定相, 热稳定性高, 柱性能稳定. 两种固定相对以上溶质探针都有较好的分离能力, HOCB6固定相(PSP)与甘脲固定相(GSP)相比较, 总体上具有更好的分离选择性, 对难分离的芳香族位置异构体(如二甲苯、甲基苯胺)具有良好的分离能力, 显示出较高的立体选择性, 对花露水中的高沸点组分有较好的分离效果. 上述研究也表明, 由于溶质在载气中传质比葫芦脲内腔快得多, 全包结尽管有利于提高分离选择性, 但展宽后的柱效不理想; 适当的高柱温既保留了部分包结作用, 同时存在端口协同作用, 能兼顾高选择性和高柱效.  相似文献   

6.
本文综述了离子液体在气相色谱固定相中的发展过程。为提高固定相的使用温度、选择性和色谱柱效,离子液体先后经历多次制备方法的改善,本文主要介绍了小分子离子液体、大体积离子液体、柱内烯基咪唑聚合离子液体、物理混配离子液体和化学键合离子液体等非手性离子液体的合成进展;同时综述了由手性氨基酸、手性胺和键合环糊精合成的手性离子液体的研究进展;并比较各种离子液体用作色谱固定相时的稳定性及选择性差异。另外,对离子液体在二维气相色谱和快速气相色谱中的应用扩展作了总结,并展望离子液体作为新型分离材料在气相色谱固定相中的研究和应用前景。  相似文献   

7.
刘海洋  王霞  邹华 《大学化学》2018,33(1):61-68
葫芦脲(CB[n])及其衍生物是由n个苷脲单元连接成的穴状分子,因其结构特殊,受到广泛的关注与研究。本文综述了CB[n]的性质、合成以及近年来CB[n]在分子开关、催化剂、药物载体等方面的研究进展。  相似文献   

8.
9.
葫芦脲的研究进展   总被引:3,自引:0,他引:3  
近几年葫芦脲和其衍生物由于其特殊的结构与性质已引起的密切关注。本文综述了葫芦脲的最新研究进展,包括葫芦脲分子及其衍生物的分子设计与合成,与聚电解质形成主链(准)聚轮烷和侧链(准)聚轮烷,与其他有机客体小分子相互作用形成轮烷和准轮烷,以及葫芦脲分子及其衍生物在囊泡、二维聚合物、色谱固定相、生物体以及药物缓释方面的最新应用。  相似文献   

10.
甘脲用作气相色谱固定相的色谱性能研究   总被引:1,自引:1,他引:1  
甘脲具有双环双脲结构,既是质子给体,又是质子受体,能与溶质产生氢键作用等多种作用力。本文制备了以甘脲作为固定相的填充柱,并对它的色谱性能进行了研究。结果表明:甘脲固定相热稳定性高、柱性能稳定,是一种良好的气相色谱固定相。该固定相对烷烃、卤代烃、芳烃、醇、酯、酮、酸、胺等类物质具有良好的分离能力,尤其是对位置异构体(如二取代苯位置异构体)有较好的分离选择性。本文还初步探讨了甘脲固定相的分离机理。  相似文献   

11.
何世伟  黄忠平  朱岩 《色谱》2013,31(12):1146-1153
碳纳米管(CNTs)作为一种新型的功能材料,具有优异的物理、化学和机械性能,已经在分析化学领域得到了广泛的关注和应用。通过填充法或原位化学气相沉积法,可制备CNTs气相色谱固定相;将CNTs沉积在硅胶微球或有机聚合物基质微球表面,可制备填充式CNTs液相色谱固定相;通过包埋共聚法将CNTs嵌入聚合物整体柱内,可制备毛细管CNTs液相色谱整体柱。本文主要综述了近年来CNTs(单壁碳纳米管和多壁碳纳米管)用于色谱固定相制备的研究现状,包括气相色谱及液相色谱,并对该领域今后的发展进行展望。  相似文献   

12.
和永瑞  齐美玲 《色谱》2020,38(4):409-413
发展高选择性固定相是实现气相色谱(GC)高效分离样品组分及其分析测定的关键。近年,材料科学的快速发展促进了新型色谱固定相的研究和应用。该文综述了近5年有关多孔材料、石墨烯及类似物、三聚茚类材料和蝶烯类材料等作为GC固定相的研究进展,并对GC固定相研究进行了总结和展望。  相似文献   

13.
Summary The retention of cyanoalkanes and cyano-alkylbenzenes during SFC was investigated on alkyl and cyanoalkyl-bonded stationary phases and compared to alkane retention. The particular behaviour of short chain homologues was attributed to a silanophilic interaction with surface-OH groups on the silica and inhibition of specific interactions between solutes and C10CN bonded groups.  相似文献   

14.
An overview is given of the literature publisned in the field of thin-layer chromatography on chemically bonded phases. Aspects which merit further attention are: quantitative analysis, organic solvent selection, stationary phase characteristics, surface modification of precoated silica plates, ion-pair chromatography and correlation of thin-layer and column chromatographic data.  相似文献   

15.
陈娇  石浩 《色谱》2017,35(12):1229-1239
手性分离在生物医药等领域具有重要意义。高效液相色谱(HPLC)因其经济、快速、高效等特点被广泛应用于手性化合物的分离分析中。手性固定相(CSP)是HPLC实现手性分离的核心,而制备有效CSP的关键在于手性选择剂的筛选。近年来,大量文献报道了新型CSPs的制备,其中键合型CSPs因具有溶剂耐受性和较高稳定性等优点受到了广泛关注。该文对近年来以手性单分子、多糖、环糊精、大环抗生素、冠醚、杯芳烃及生物碱等为手性选择剂制备的新型键合型CSPs进行了归纳整理,并对其发展前景进行了展望。  相似文献   

16.
Summary The paper discusses the effect of the length and structure of the hydrocarbon chain connecting the nitrile group to the silica gel surface on the chromatographic properties of cyanoalkyl phases.When using non-polar and polar mobile phases, the selectivity of the cyanodecyl phases toward PAHs is higher than of the cyanopropyl phase and of hydroxylated silica gel.Polar additives to the mobile phase drastically decrease the retention on silica gel and on the cyanopropyl phase while affect the properties of cyanodecyl phases only to a considerably less degree. Newly synthesized phases with different structures of the hydrocarbon chain are compared with the commerical cyano-and ODS-phases. The retention mechanism on the cyanoalkyl phases is discussed.  相似文献   

17.
Summary Stationary phases containing bonded nitrile groups have been synthesized. The effect of the n-alkyl chain length connecting the nitrile groups to the surface and of the end-capping on the chromatographic properties was studied. The synthesized material was compared with commercial nitrile phases in the separation of isomeric cresols and xylenols.  相似文献   

18.
Summary A new class of stationary phases for high-performance liquid chromatography (HPLC) are described which simulate in their retention chracteristics ion-pair separations. The phases consist of mixtures of chemically dissimilar ligands chemically bonded to silica supports. These phases are largely reversed-phase in nature, but also contain significant ion-exchange properties, at levels similar to those demonstrated to occur in ionpairing. By bonding both ionic and hydrophobic groups in the correct proportions, mixed retention mechanisms are created, resulting in unique selectivities, while retaining the excellent stabilities and efficiencies characteristic of bonded phases. The ratio of hydrophobic to ionic character can be controlled during the synthesis, and is used as a tool to vary the stationary phase, rather than only the mobile phase, to effect the separation desired. The synthesis and behavior of both anionic and cationic/reversed-phase materials are described, and are applied to the simultaneous separation of nucleosides and nucleotides, and to the separation of the catecholamines.Presented at the 14th International Symposium on Chromatography London, September, 1982.  相似文献   

19.
Two new categories of stationary phase have been studied: liquid crystals and polyesters. The liquid crystals were p,p′-azoxyphenetol, p(n-hexyloxy)phenyl-p′-methoxy benzoate, and p-pentyloxy-p′-ethoxyazoxybenzene; and the polyester phases 1,4-butanediol succinate (LAC-860), ethylene glycol succinate (LAC-886), diethylene glycol succinate (LAC-738), diethylene glycol adipate (LAC-296), and neopentyl glycol adipate (LAC-769). Abnormal chromatographic behavior, has been observed: an increase in specific retention volumes and an improvement in the separation of normal, branched, and cycloparaffins, depending on their structures, at high temperatures within a specified range. This phenomenon is the opposite of the behavior of traditional stationary phases. From the chromatograms obtained, plots of log v against 1/T, and differential thermal analysis it is concluded that this abnormal behavior may be attributed to the penetration of solutes through the ordered structure of the mesophase and the rod-like molecules of the polyesters. Furthermore, the chromatographic behavior of some of the polyester (LAC-series) stationary phases in respect of temperature changes is similar to that of the nematic mesophases.  相似文献   

20.
田耘  曹小敏  张琪  曾昭睿 《色谱》2009,27(6):737-744
超分子化学是一门研究分子间特定识别能力的新兴学科,超分子化合物所具有的主-客体识别能力为高选择性的色谱分离提供了广阔的发展前景。毛细管电色谱是近年来发展起来的一种高效、高选择性的微分离技术,电色谱固定相是该技术的核心部分,一直是研究的热点。本文综述了1998年以来环糊精、杯芳烃、冠醚以及大环多胺等4种超分子化合物用作毛细管电色谱固定相的研究进展情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号