首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 81 毫秒
1.
为研究软质高分子聚合物材料的静、动态拉伸力学性能,利用Instron-5943万能材料试验机和改进型分离式霍普金森拉杆(SHTB)实验装置对聚氯乙烯(PVC)弹性体材料进行了静、动态拉伸实验,得到了该材料在应变率为0.1 s~(-1)及400~1 850 s~(-1)下的应力-应变曲线。动态拉伸实验过程中,联合波形图分析和高速摄像方法对试样连接方式和胶黏剂进行了优选,通过脉冲整形器延缓入射波上升沿以实现恒应变率加载,调整入射杆与吸收杆间空隙解决了入射波基线偏离问题。结果表明:PVC弹性体在准静态(0.1 s~(-1))拉伸载荷下具有明显的线弹性特征,在动态(400~1 850 s~(-1))拉伸载荷下具有一定的黏性特征。构建了朱-王-唐(ZWT)非线性黏弹性本构模型以表征PVC弹性体材料的黏弹性力学特征,实验与模型拟合结果较吻合。  相似文献   

2.
低密度聚氨酯泡沫压缩行为实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
 在室温下,对一种低密度硬质聚氨酯泡沫进行了准静态压缩及应变率在1×103~5×103 s-1范围内的冲击压缩实验。结果表明,所测试的聚氨酯泡沫材料在准静态实验与动态实验之间存在明显的应变率效应,但在纯动态实验中应变率效应不明显。最后,给出了以屈服应力、密度、应变等为参量的动态压缩本构关系,且能较好地与材料的动态压缩曲线吻合。  相似文献   

3.
4.
高应变率下硅橡胶的本构行为研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 硅橡胶是一种高分子聚合物,可以承受大变形,用途广泛。利用改进的分离式霍普金森压杆(SHPB)实验技术,对硅橡胶试样进行了不同应变率下的冲击压缩实验,基于实验数据,利用应变能函数构建了考虑应变率效应的材料本构形式。同时,实验过程中发现,在高应变率加载条件下,材料在压缩变形后出现了损伤线区,线区直径与加载应变率及试样尺寸之间存在一定的定量关系。  相似文献   

5.
 利用分离式霍普金森压杆(Split Hopkinson Pressure Bar,SHPB)技术,研究了土体在不同应变率条件下的冲击动态力学性能,发现土体有明显的应变率效应,与静载相比,冲击载荷下土的动强度和动模量均有很大的提高。根据实验曲线的特征,以一根线性弹簧和两个不同松弛时间的Maxwell体并联的粘弹性模型来表达土体的损伤型粘弹性本构模型,两个Maxwell体分别表示土体的低应变率响应和高应变率响应,模型的数值拟合曲线与实测动态本构曲线具有较好的一致性。拟合参数表明,土体对低应变率的响应与混凝土相同,对高应变率的敏感性远远高于混凝土。  相似文献   

6.
 利用Instron万能试验机与LC4超硬铝合金分离式Hopkinson压杆设备,对3种不同波阻抗的橡胶材料——炭黑母胶(Carbon Black Rubber)、硅橡胶(Silicone Rubber)和泡沫橡胶(Foam Rubber)在较大应变率范围(0.002~15 000s-1)内进行了单轴压缩实验,研究应变率对橡胶材料力学性能的影响。实验结果表明:3种橡胶的准静态与动态应力-应变曲线具有不同的应变硬化形式,且动态加载下随着应变率的增大,硬化效应逐渐增强;在准静态及高应变率(12 000~15 000 s-1)压缩下,泡沫橡胶表现出多孔类材料压缩曲线的弹性、塑性崩塌及致密化3段特征。基于Rivilin应变能模型,构建了一个应变率相关的动态本构模型,模拟结果与实验结果吻合较好,可以用于描述较大应变率范围内3种橡胶的非线性应力-应变关系。  相似文献   

7.
炸药与不同材料之间摩擦系数的研究   总被引:1,自引:0,他引:1  
采用分离式霍普金森压剪杆装置,对GO-924炸药与铝合金、橡胶、GO-924炸药之间在不同冲击加载条件下的摩擦系数进行了研究,得到了炸药与不同材料界面间的摩擦系数随时间变化的曲线。结果表明:炸药与铝合金之间的动摩擦系数维持在0.166~0.176范围内,且不随冲击加载速率的变化而变化;炸药与橡胶之间的动摩擦系数在运动过程中不断增大,其数值与冲击加载速率相关;炸药与炸药之间的动摩擦系数在运动过程中先增大,达到峰值后迅速下降,分析认为这种现象与炸药内部产生损伤有关。  相似文献   

8.
入射波整形技术的实验和理论研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 在硅橡胶材料的分离式霍普金森压杆实验中,实验研究了如何实现常应变率加载,并且得到了整形器尺寸与加载应变率之间,以及加载应变率与试样厚度之间的定量关系。根据预估入射波形的理论模型,给出了采用H62黄铜整形器整形后入射波形的计算结果和实验结果,二者基本上是一致的。  相似文献   

9.
10.
 利用分离式霍普金森压杆系统,采用铅片作为整形器,分别对常温下及400、600、800 ℃高温处理后的活性粉末混凝土(Reactive Powder Concrete,RPC)试样进行单轴冲击压缩实验,研究高温后RPC材料的动态力学性能,建立高温处理后材料的率型本构模型。结果表明:经不同高温处理后的RPC材料的动态抗压强度和韧性指标均有较明显的应变率敏感性,而峰值应变、初始弹性模量受应变率影响不大;不同应变率下,400 ℃以上高温处理后RPC材料的单轴动态压缩力学性能有所降低。扫描电镜分析表明,高温处理后RPC材料微观结构的劣化是宏观力学性能降低的根本原因。对ZWT粘弹性本构模型进行了修正,修正后的模型适用于混凝土材料经高温处理后的率型本构关系的分析。  相似文献   

11.
通过夹心式PVDF(Polyvinylide Fluoride)压电计的动态分离式Hopkinson压杆(SHPB)标定实验,系统地讨论了传感器的动态响应特性,其中包括测量电路、PVDF表面应力集中、压电计的材料及结构特性和同一压电计受多次撞击对测试信号的影响,为PVDF压电计的制作工艺研究提供参考。利用标定好的压电计测试了橡胶材料在SHPB实验中的动态应力均匀过程。结果表明:调节并联电阻值可以提高压电计的传感精度;增大压电计的敏感面积可以减小因应力集中所造成的信号失真;材料的热粘塑性性质、摩擦效应等将使信号振荡幅度偏小;多次撞击对信号的加载与卸载段都将产生影响,但当传感器表面未发生明显损伤时,测试的应力平台平均值与真实信号近似相同。  相似文献   

12.
 为对弹性杆共轴撞击这一应力波基础问题进行扩展研究,基于非线性动力学软件LS-DYNA建立了有限元模型,分析了共轴撞击的变截面杆的形态参数对波形的影响规律,探讨了应力波产生的机理,并对其应用前景进行了展望。结果表明,由于变截面效应,一定形态参数的变截面杆共轴撞击可以得到具备波阵面平滑上升,较长的前沿升时和消除了波形振荡等特性的应力波;该特性是变截面杆撞击这一过程的内在属性,主要由变截面段的最小半径控制,变截面段长度仅对局部形态产生影响,对加载速度的变化不敏感;半无限长的变截面杆共轴撞击规律可在应力波加工等领域应用。由此可见,该规律对基础性理论进行了扩展,应用前景广阔。  相似文献   

13.
采用?74 mm大口径分离式霍普金森压杆(SHPB)对不同温度(20、200、400℃)下的C45混凝土材料进行动态力学性能实验,得到了不同温度、不同应变率下混凝土材料的应力-应变曲线。实验结果表明:在20~400℃温度范围内,混凝土材料具有温度硬化和应变率硬化现象。基于上述实验数据给出了损伤变量关于塑性应变的关系式,并通过相关实验数据确定了不同温度、不同应变率下损伤演化方程的材料参数。将该损伤演化方程应用于混凝土材料的本构关系中,预测结果与实验数据具有较好的一致性,证明了所提出的高温、高应变率下混凝土材料损伤演化方程的合理性。  相似文献   

14.
单脉冲加载的Hopkinson压杆实验中预留缝隙确定方法的研究   总被引:2,自引:0,他引:2  
 在传统Hopkinson压杆实验中,反射拉伸波在入射杆的撞击端反射形成压缩波,导致实验过程中对试样进行了多次加载,单脉冲加载的Hopkinson压杆实验技术解决了该问题。详细总结了单脉冲加载的Hopkinson压杆实验技术原理,给出了法兰盘与质量块间预留缝隙的计算方法,分析了预留缝隙不同大小对实验结果的影响。建立了一套单脉冲加载的Hopkinson压杆实验装置,并利用高速摄影验证了实验技术的可靠性。  相似文献   

15.
绝热剪切带(Adiabatic Shear Band,ASB)是许多金属材料在冲击载荷作用下发生破坏的主要原因之一,它是近年来冲击动力学和损伤力学研究的前沿和热点。相关的理论研究主要针对一维剪切条件,分析应力、应变、剪切速度、材料热物理和力学性能、初始缺陷大小之间的关系,得到一个由多个物理量组合而成的量来判别材料出现剪切带的难易。ASB的实验主要利用Hopkinson压杆、扭杆、压剪炮等加载技术,研究钛合金、钨合金、高强结构钢等材料的剪切带特征,包括局部温度和变形分布、剪切带出现的阈值等。但是,对剪切带演化过程的在位观察及其动态实时演化的研究还较少见,妨碍了人们对由于剪切局部化而导致的材料破坏机理的深入认识。针对45钢,在Hopkinson压杆上,开展了不同冲击加载条件下剪切带演化过程的在位观察及可视化研究。利用自行设计的高分辨力的光学观测系统和基于数字相关理论的图像处理软件,捕捉了单一试样在冲击加载条件下ASB逐渐形成和扩展的过程。同时,利用LS-DYNA商业程序对试样的冲击压缩过程进行了数值模拟,所得主要结果与实验观测基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号