共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
不少年来人们一直在致力于探索高温下固体中超声声速的测量方法。其主要困难是测量所用的压电换能器能承受的温度有限制。为此而采取的措施有:加进足够长的耦合棒;选用能隔热的耦合剂;采用短时接触的传声方法;以及采用非接触方式的电磁声换能方法等。但所有这些仍未能使问题得到满意的解决。为此本文提出了一种全面激光遥测的方法,即用一套激光系统来激发超声脉冲,同时又用另一套激光系统来测量该声脉冲在样品中的传播时间,从而得出被测样品的超声声速。被测样品被密封在高温真空炉中,激光束则通过炉壁上的透光窗孔射入和射出。使测量装置与被测样品完全分离开,成为一套不受工作温度限制的遥测系统。 相似文献
3.
4.
利用多普勒效应来测量声速是大学物理中的一个重要的实验。本文介绍了设计性实验"超声多普勒效应测量声速",利用多普勒效应综合实验仪,设计出一套超声多普勒效应测量声速的实验装置,并利用该实验装置测量声速。 相似文献
5.
6.
7.
8.
9.
设计并搭建了超声光栅,观察了激光经过光栅形成的衍射斑纹,测量了声速;并利用超声光栅测定了不同温度、不同浓度的NaCl溶液中的声速,给出了声速-水温和声速-溶液浓度的依赖关系.水的温度每升高1℃,3.974 MHz的超声波的声速增加2.09 m/s,16.574 MHz的超声波的波速增加2.04m/s;声速随着NaCl溶液浓度的增大线性增加,NaCl溶液浓度每升高1%,3.974 MHz的超声波声速增加13.637 m/s,16.574 MHz的声波声速增加11.757 m/s.在此基础上,分析了不同频率的超声波对实验规律的影响,认为不同频率的超声波在相同条件下测量的溶液中声速大小的不同源于测量的随机误差. 相似文献
10.
11.
12.
介绍了利用VISAR技术测量受冲击压缩LY12铝的高压声速的方法。平板对称碰撞实验在冲击波物理与爆轰物理实验室的二级轻气炮上进行,峰值应力约为20、32、55和71 GPa。每发实验中,VISAR同时使用三种条纹常数测量LY12铝和单晶LiF窗口的界面粒子速度剖面。从三种条纹常数计算的界面粒子速度剖面相互符合,完全一致。实验信号具有很高的信噪比,表明样品与窗口之间的界面连结和处理技术非常成功。这种测量技术不仅能够得到初始加载应力下的纵波声速,而且能够得到声速沿着卸载路径的变化。将声速的塑性段外推到初始冲击加载压力即得到该压力下的体积声速。LY12铝的声速测量结果与假定ργ为常数条件下用Mie-Grüneisen状态方程计算的结果符合得很好。 相似文献
13.
半导体激光器的自混合散斑干涉测量流体速度 总被引:6,自引:4,他引:6
提出了一种简便的激光自混合散斑干涉测量流体速度的方法。根据散斑和法布里-珀罗腔的理论,提出了半导体激光器的自混合散斑干涉模型。研究了流体运动时在半导体激光器内产生的自混合散斑干涉效应(SMPI),给出了激光器输出增益的变化及其概率密度分布。得到了激光自混合散斑干涉平均频率与流体速度之间的关系。模拟计算和实验结果验证了这个关系。利用散斑干涉的平均频率与流体速度的关系测量了高分子材料溶液的速度,并在溶液浓度和背景光变化时,对流体速度进行了测量、比较和分析。实验表明。在溶液浓度不太低时,测量误差小于8%。 相似文献
14.
介绍了分别用共振干涉(驻波)法、相位比较法和时差法测量声速的原理、实验装置及实验结果,同时对实验结果进行了比较,通过不确定度及其来源分析,得出几种方法的相对误差和不确定度关系。 相似文献
15.
16.
17.
18.
Hongxing Zheng 《International Journal of Infrared and Millimeter Waves》2005,26(9):1277-1290
In this paper, a millimeter-wave sensor is presented for measurement of displacement and velocity. By using monolithic microwave integrated circuits and digital quadrature sampling signal-processing scheme, the sensor operating at 60 GHz is implemented. Polynomial curve-fitting technique is used for the error correction. Digital quadrature mixer is also configured as a phase-detecting processor, which enables low Doppler frequency to be measured with high resolution. Measured displacement results indicate resolution and maximum error of 10 μm and 30 μm, respectively, and measured speed is as low as 30 mm/s, corresponding to 6.6 Hz in Doppler frequency, with an estimated velocity resolution of 3.3 mm/s. To the best of our knowledge, the attained resolution and maximum error are the best reported results. 相似文献