首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LiMn2O4 and LiZnxPryMn2?x?yO4 (x = 0.10–0.24; y = 0.01–0.10) powders have been synthesized by sol–gel method using palmitic acid as chelating agent. The synthesized samples have been subjected to thermo gravimetric and differential thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX). The sol–gel route bestows low calcination temperature, shorter heating time, high purity, good control over stoichiometry, small particle size, high surface area, good surface morphology and better homogeneity, The XRD patterns reveal high degree of crystallinity and better phase purity. SEM and TEM images exhibit nano-sized nature particles with good agglomeration. EDAX peaks of Zn, Pr, Mn and O have been confirmed in actual compositions of LiMn2O4 and LiZnxPryMn2?x?yO4. Charge–discharge studies of pristine spinel LiMn2O4 heated at 850 °C delivers discharge capacity of 132 mA h g?1 corresponding to columbic efficiency of 73 % during the first cycle. At the end of 10th cycles, it delivers maximum discharge capacity of 112 mA h g?1 with columbic efficiency of 70 % and capacity fade of 0.15 mA h g?1 cycle?1 over the investigated 10 cycles. Inter alia, all dopants concentrations, LiZn0.10Pr0.10Mn1.80O4 exhibits the better cycling performance (1st cycle discharge capacity: 130 mA h g?1 comparing to undoped spinel 132 mA h g?1) corresponding to columbic efficiency of 73 % with capacity fade of 0.12 mA h g?1 cycle?1.  相似文献   

2.
Spinel LiMn2O4 cathode materials were coated with 1.0, 3.0 and 5.0?wt.% of MgF2 by precipitation, followed by heat treatment at 400?°C for 5?h in air. The effects of MgF2 coating on the structural and electrochemical properties of LiMn2O4 cathodes were investigated using XRD, SEM, and electrochemical tests. XRD and SEM results show that no significant bulk structural differences are observed between the coated and pristine LiMn2O4. The charge–discharge tests show that the discharge capacity of LiMn2O4 decreases slightly, but the cyclability of LiMn2O4 is clearly improved when the amount of the MgF2 coated was increased to 3.0?wt.%. The 3.0?wt.% MgF2-coated LiMn2O4 exhibits capacity retention of 80.1 and 76.7 % after 100 cycles at room temperature (25?°C) and elevated temperature (55?°C) at a rate of 1?C, respectively, much higher than those of the bare LiMn2O4 (70.1 and 61.6 %). The improvement of electrochemical performance is attributed to the suppression of Mn dissolution into the electrolyte via the MgF2 coating layer.  相似文献   

3.
The influence of Sn substitution in LiMn2O4 thin films as a cathode has been studied via solution deposition to improve the electrochemical performance of thin film lithium batteries. LiSn0.025Mn1.95O4 thin films showed the most promising performance, i.e. a high capacity retention of 77% at 10 C after the 500th cycle, due to the increased average Mn valence state. The thin films of LiSnx/2Mn2?xO4 (x ? 0.10) showed significant precipitation of SnO2 and SnO after the cycling evaluation.  相似文献   

4.
Electrochemical properties of composite cathodes consisting of La0.8Sr0.2Mn1?x Cu x O3 (LSMCu, 0?≤?x?≤?0.2) and Ce0.8Gd0.2O2?x (GDC) were determined by impedance spectroscopy, and conduction mechanism for the composite cathodes was investigated by a near-edge X-ray absorption fine-structure analysis (NEXAFS). LSMCu–GDC cathodes showed lower polarization resistance (R p) than LSM–GDC up to 750 °C, whereas they exhibited better performance at higher temperature (≥800 °C). The best performance was achieved with the LSMCu10–GDC cathode: 0.27 and 0.08?Ω cm2 at 800 °C and 850 °C, respectively. NEXAFS and refinement results confirmed that Cu doping caused the oxidation of Mn3+ to Mn4+ and lattice contraction. This additional Mn4+ can lead to the formation of oxygen vacancies when Mn4+ is converted to Mn3+ at relatively high temperatures (above 600 °C). This in turn contributes to improved oxygen ion transport in LSM. The LSMCu–GDC composite cathode can thus be considered a suitable potential cathode for SOFC applications.  相似文献   

5.
LiMn2O4 cathode materials with high discharge capacity and good cyclic stability were prepared by a simple one-step hydrothermal treatment of KMnO4, aniline and LiOH solutions at 120–180 °C for 24 h. The aniline/KMnO4 molar ratio (R) and hydrothermal temperature exhibited an obvious influence on the component and phase structures of the resulting product. The precursor KMnO4 was firstly reduced to birnessite when R was less than 0.2:1 at 120–150 °C. Pure-phased LiMn2O4 was formed when R was 0.2:1, and the LiMn2O4 was further reduced to Mn3O4 when R was kept in the range of 0.2–0.3 at 120–150 °C. Moreover, LiMn2O4 was fabricated when R was 0.15:1 at 180 °C. Octahedron-like LiMn2O4 about 300 nm was prepared at 120 °C, and particle size decreased with an increase in hydrothermal temperature. Especially, LiMn2O4 synthesized at 150 °C exhibited the best electrochemical performance with the highest initial discharge capacity of 127.4 mAh g−1 and cycling capacity of 106.1 mAh g−1 after 100 cycles. The high discharge capacity and cycling stability of the as-prepared LiMn2O4 cathode for rechargeable lithium batteries were ascribed to the appropriate particle size and larger cell volume.  相似文献   

6.
Thermodynamic instability of positive electrodes (cathodes) in Li-ion batteries in humid air and battery solutions results in capacity fading and batteries degradation, especially at elevated temperatures. In this work, we studied thermal interactions between cathode materials Li2MnO3, xLi2MnO3 .(1???x)Li(MnNiCo)O2,LiNi0.33Mn0.33Co0.33O2, LiNi0.4Mn0.4Co0.2O2, LiNi0.8Co0.15Al0.05O2 LiMn1.5Ni0.5O4, LiMn(or Fe)PO4, and battery solutions containing ethylene carbonate (EC) or propylene carbonate (PC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) and LiPF6 salt in the temperature range of 40–400 °C. It was found that these materials are stable chemically and well performing in LiPF6-based solutions up to 60 °C. The thermal decomposition of the electrolyte solutions starts >180 °C. The macro-structural transformations of cathode materials upon exothermic reactions were studied by transmission electron microscopy (TEM), X-ray difraction (XRD) and Raman spectroscopy. Differential scanning calorimetry (DSC) studies have shown that the exothermic reactions in the temperature range of 60–140 °C lead to partial decomposition of both the cathode material and electrolyte solution. The systems thus formed consisted of partially decomposed solutions and partially chemically delithiated cathode materials covered by reactions products. Thermal reactions terminate and this system reaches equilibrium at about 120 °C. It remains stable up to the beginning of the solution decomposition at about 180 °C. The increased content of surface Li2CO3 is found to significantly affect the thermal processes at high temperature range due to extensive exothermic decomposition at low temperatures.  相似文献   

7.
The spinel LiMn2O4 cathode material has been considered as one of the most potential cathode active materials for rechargeable lithium ion batteries. The sodium-doped LiMn2O4 is synthesized by solid-state reaction. The X-ray diffraction analysis reveals that the Li1?x Na x Mn2O4 (0?≤?x?≤?0.01) exhibits a single phase with cubic spinel structure. The particles of the doped samples exhibit better crystallinity and uniform distribution. The diffusion coefficient of the Li0.99Na0.01Mn2O4 sample is 2.45?×?10?10 cm?2 s?1 and 3.74?×?10?10 cm?2 s?1, which is much higher than that of the undoped spinel LiMn2O4 sample, indicating the Na+-ion doping is favorable to lithium ion migration in the spinel structure. The galvanostatic charge–discharge results show that the Na+-ion doping could improve cycling performance and rate capability, which is mainly due to the higher ion diffusion coefficient and more stable spinel structure.  相似文献   

8.
Porous LiMn2O4 microsheets with micro-nanostructure have been successfully prepared through a simple carbon gel-combustion process with a microporous membrane as hard template. The crystal structure, morphology, chemical composition, and surface analysis of the as-obtained LiMn2O4 microsheets are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscope (XPS). It can be found that the as-prepared LiMn2O4 sample presents the two-dimensional (2-D) sheet structure with porous structure comprised with nano-scaled particles. As cathode materials for lithium-ion batteries, the obtained LiMn2O4 microsheets show superior rate capacities and cycling performance at various charge/discharge rates. The LiMn2O4 microsheets exhibit a higher charge and discharge capacity of 137.0 and 134.7 mAh g?1 in the first cycle at 0.5 C, and it remains 127.6 mAh g?1 after 50 cycles, which accounts for 94.7% discharge capacity retention. Even at 10 C rate, the electrode also delivers the discharge capacity of 91.0 mAh g?1 after 300 cycles (93.5% capacity retention). The superior electrochemical properties of the LiMn2O4 microsheets could be attributed to the unique microsheets with porous micro-nanostructure, more active sites of the Li-ions insertion/deinsertion for the higher contact area between the LiMn2O4 nano-scaled particles and the electrolyte, and better kinetic properties, suggesting the applications of the sample in high-power lithium-ion batteries.  相似文献   

9.
Single-crystal magnesium-doped spinel lithium manganate cathode materials are prepared by the hydrothermal method followed by the heat treatment. XRD patterns reveal that Mg2+ions have already diffused into the Li1.088Mn1.912O4 crystal structure and not affect the Fd3m space group. SEM images demonstrate that the magnesium-doped spinel lithium manganates show uniform polyhedral single crystals with 2–4 μm. Electrochemical performance demonstrates that the optimized composition of Li1.088Mg0.070Mn1.842O4 electrode exhibits the best electrochemical properties. It delivers 92.0 mAh g?1 at 8C rates and corresponds to 90.8% capacity retention (vs. 1C), far higher than those of the pristine electrode (70.4 mAh g?1 and 69.2%). In addition, the Li1.088Mg0.070Mn1.842O4 electrode also shows 95.5% capacity retention after 100 cycles at 1C, while the pristine electrode only shows 91.0% capacity retention. The excellent electrochemical performances of Li1.088Mg0.070Mn1.842O4 electrode are ascribed to the suppressed polarization, more stable crystal structure, and better kinetic characteristics.  相似文献   

10.
Ultrathin ZnO, ZrO2, and Al2O3 surface coatings are deposited via atomic layer deposition (ALD) with high conformality and atomic scale thickness control to enhance the electrochemical performance of LiMn2O4 for applications in lithium ion batteries. Two types of ALD-modified LiMn2O4 electrodes are fabricated: one is ALD-coated LiMn2O4 composite electrode and the other is electrode composed of ALD-coated LiMn2O4 particles and uncoated carbon/polyvinylidenefluoride network. Cycling performance and cyclic voltammetric patterns reveal that ZnO ALD coating is the most effective protective film for improving the electrochemical performance of LiMn2O4 at either 25 or 55 °C, followed by ZrO2 and Al2O3. After 100 electrochemical cycles in 1 C at 55 °C, the electrode consisting of LiMn2O4 particles coated with six ZnO ALD layers (as thin as ~1 nm) delivers the highest final capacity, more than twice that of the bare electrode. It is also found that amphoteric oxide coating on LiMn2O4 particles can enhance the cycleability of LiMn2O4 more effectively than coating on the composite electrode. Furthermore, for ALD coating either on the composite electrode or on LiMn2O4 particles, the effect of oxide ALD modification for improving capacity retention and increasing specific capacity of LiMn2O4 is more phenomenal at elevated temperature than at room temperature.  相似文献   

11.
LiMn_2O_4 and LiNi_xAlyMn_(2-x-y)O_4(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMn_2O_4 and LiNi_xAl_yMn_(2-x-y)O_4 fortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMn_2O_4 shows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMn_2O_4 samples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNi_(0.5)Al_(0.05)Mn_(1.45)O_4 delivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMn_2O_4 and LiNi_(0.5)Al_(0.05)Mn_(1.45)O_4 depict the high and low real polarization of 1562 and 1100 Ω.  相似文献   

12.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

13.
LiCr0.2Ni0.4Mn1.4O4 was synthesized by a sol–gel technique in which tartaric acid was used as oxide precursor. The synthesized powder was annealed at five different temperatures from 600 to 1,000 °C and tested as a 5-V cathode material in Li-ion batteries. The study shows that annealing at higher temperatures resulted in improved electrochemical performance, increased particle size, and a differentiated surface composition. Spinel powders synthesized at 900 °C had initial discharge capacities close to 130 mAh g?1 at C and C/2 discharge rates. Powders synthesized at 1,000 °C showed capacity retention values higher than 85 % at C/2, C, and 2C rates at 25 °C after 50 cycles. Annealing at 600–800 °C resulted in formation of spinel particles smaller than 200 nm, while almost micron-sized particles were obtained at 900–1,000 °C. Chromium deficiency was detected at the surface of the active materials annealed at low temperatures. The XPS results indicate presence of Cr6+ impurity when the annealing temperature was not high enough. The study revealed that increased annealing temperature is beneficial for both improved electrochemical performance of LiCr0.2Ni0.4Mn1.4O4 and for avoiding formation of Cr6+ impurity on its surface.  相似文献   

14.
Cathode materials LiNi0.5Mn1.5O4 and LiNi0.5 ? x/2La x Mn1.5 ? x/2O4 (x = 0.04, 0.1, 0.14) were successfully prepared by the sol-gel self-combustion reaction (SCR) method. The X-ray diffraction (XRD) patterns indicated that, a few of doping La ions did not change the structure of LiNi0.5Mn1.5O4 material. The scanning electronic microscopy (SEM) showed that the sample heated at 800°C for 12 h and then annealed at 600°C for 10 h exhibited excellent geometry appearance. A novel electrolyte system, 0.7 mol L?1 lithium bis(oxalate)borate (LiBOB)-propylene carbonate (PC)/dimethyl carbonate (DMC) (1: 1, v/v), was used in the cycle performance test of the cell. The results showed that the cell with this novel electrolyte system performed better than the one with traditional electrolyte system, 1.0 mol L?1 LiPF6-ethylene carbonate (EC)/DMC (1: 1, v/v). And the electrochemical properties tests showed that LiNi0.45La0.1Mn1.45O4/Li cell performed better than LiNi0.5Mn1.5O4/Li cell at cycle performance, median voltage, and efficiency.  相似文献   

15.
The Li-rich Li1.3[Ni0.35Mn0.65]O2+x microspheres are firstly prepared and subsequently transferred into the Al2O3-coated Li-rich Li1.3[Ni0.35Mn0.65]O2+x microspheres by a simple deposition method. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. The results reveal that the Al2O3-coated Li-rich Li1.3[Ni0.35Mn0.65]O2+x sample has a typical α-NaFeO2 layered structure with the existence of Li2MnO3-type integrated component, and the Al2O3 layer is uniformly coated on the surface of the spherical Li-rich Li1.3[Ni0.35Mn0.65]O2+x particles with a thickness of about 4 nm. Importantly, the Al2O3-coated Li-rich sample exhibits obviously improved electrochemical performance compared with the pristine one, especially the 2 wt.% Al2O3-coated sample shows the best electrochemical properties, which delivers an initial discharge capacity of 228 mAh g?1 at a rate of 0.1 C in the voltage of 2.0–4.6 V, and the first coulombic efficiency is up to 90 %. Furthermore, the 2 wt.% Al2O3-coated sample represents excellent cycling stability with capacity retention of 90.9 % at 0.33 C after 100 cycles, much higher than that of the pristine one (62.2 %). Particularly, herein, the typical inferior rate capability of Li-rich layered cathode is apparently improved, and the 2 wt.% Al2O3-coated sample also shows a high rate capability, which can deliver a capacity of 101 mAh g?1 even at 10 C. Besides, the thin Al2O3 layer can reduce the charge transfer resistance and stabilize the surface structure of active material during cycling, which is responsible for the improvement of electrochemical performance of the Li-rich Li1.3[Ni0.35Mn0.65]O2+x .  相似文献   

16.
Novel NiCo2O4 nanoarrays have been in-situ grown on a La0.8Sr0.2MnO3-δ(LSM) cathode through a hydrothermal method, which presents the enhanced electrochemical performances of the LSM cathode for the intermediate temperature solid oxide fuel cells. XRD and SEM have been used to characterize phase structure and morphology of NiCo2O4 nanoarrays. The LSM cathode, modified by the NiCo2O4 nanoarrays, exhibits excellent electrochemical performances compared with the bare LSM cathode. The maximum peak power density of single cell, based on the NiCo2O4 nanoarrays modified the LSM cathode, reaches 957 mW cm?2 at 800 °C, which is almost two times higher than that for the cell based on the bare LSM cathode.  相似文献   

17.
The microwave sintering method is used to synthesize the spinel LiMg0.05Mn1.95O4 materials, and the structures and electrochemical performances of as-prepared powders are investigated. The powders resulting from the microwave synthesis are single crystalline phases with cubic spinel structure and exhibit outstanding structural stability. The discharge capacity and cycling stability of LiMg0.05Mn1.95O4 are found to be superior with lower capacity fading over the investigated 100 cycles at elevated temperature (55 °C). The XRF and EIS measurements reveal that the doped LiMn2O4 synthesized by this simple method has lower dissolution of manganese into the electrolyte and higher electronic conductivity at high temperature for lithium ion batteries.  相似文献   

18.
Recycling spent Zn–Mn batteries by synthesizing the products with high added value is very active internationally. In this work, we have successfully synthesized the spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries by simple sol–gel method using the manganese source that is recovered from spent Zn–Mn batteries through hydrometallurgy recycling technology. The influence of sintering temperature on the structure, the morphological properties, and the electrochemical properties of the product is investigated. The results show that spinel LiMn2O4 prepared at 700 °C has the best comprehensive performance. Moreover, the electrochemical performance of spinel LiMn2O4 has been further optimized by Co-ion doping.  相似文献   

19.
以醋酸锰、氢氧化锂和三氧化二铟为原料,以柠檬酸为配位剂,采用溶胶-凝胶法制备了掺杂In的尖晶石LiMn2-xInxO4(x=0,0.01,0.02,0.05),采用XRD、SEM对目标材料进行了结构和形貌表征,采用恒流充放电、循环伏安(CV)以及交流阻抗(EIS)谱测试对材料进行了电化学性能表征,考察了不同In掺杂量对材料性能的影响。结果表明,当In掺杂量为1%时,LiMn1.99In0.01O4样品具有纯的尖晶石锰酸锂结构,在0.5C和3.4~4.35 V电压范围条件下,LiMn1.99In0.01O4的初始放电容量为119.9 mAh.g-1,经过1C 30次,2C 30次,再0.5C 5次循环后,其放电容量保持率为84.9%,显示了良好的电化学性能。掺杂1%的In的样品比未掺杂的样品具有更优的高温循环稳定性能。  相似文献   

20.
In a novel attempt to exploit corn starch as gelling agent (in sol–gel method) and combustible fuel (in solution-assisted combustion method), high-capacity LiMn0.4Ni0.4Co0.2O2 and LiMn1/3Ni1/3Co1/3O2 cathode materials have been prepared and a comparison of electrochemical performance of the same has been made. Among the two compounds chosen for the study, LiMn1/3Ni1/3Co1/3O2 exhibits better physical and electrochemical properties. Particularly, LiMn1/3Ni1/3Co1/3O2 cathode synthesized using corn starch-assisted combustion method exhibits an appreciable capacity of 176 mAh g?1, excellent capacity retention of 93 % up to 100 cycles and susceptible to rate capability test up to 1 C rate, thus qualifying the same for high-capacity and high-rate lithium battery applications. The study demonstrates the possibility of exploiting corn starch as gelling agent and as a combustible fuel in synthesizing lithium intercalating oxide compounds with improved electrochemical behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号