首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
(Vapor + liquid) equilibria were evaluated from the measured bubble temperatures at 95.8 kPa, over the entire composition range for the binary mixtures of iso-octane with ethanol, tert-butanol, m- and p-xylenes, n-hexane and chlorobenzene, making use of a Swietoslawski type ebulliometer. Wilson model, representing the liquid phase mole fraction versus temperature measurements well was used for the computations.  相似文献   

2.
Bubble point temperatures at 95.5 kPa, over the entire composition range, are measured for the binary mixtures of acetonitrile with acetyl acetone, anisole, bromobenzene, isopropyl alcohol, methyl tertiary butyl ether, and tetra ethoxy silane – making use of a Swietoslawski type ebulliometer. The measured liquid phase composition versus bubble point temperature are found to be well represented by the Wilson model. Measured values of the liquid phase mole fraction versus bubble point temperature data are presented, along with the computed values of the vapor phase mole fractions and activity coefficients, and discussed.  相似文献   

3.
Bubble point temperatures at 95.23 kPa, over the entire composition range are measured for the binary mixtures formed by p-cresol with 1,2-dichloroethane, 1,1,2,2-tetrachloroethane trichloroethylene, tetrachloroethylene, and o- , m- , and p-xylenes, making use of a Swietoslawski-type ebulliometer. Liquid phase mole fraction (x1) versus bubble point temperature (T) measurements are found to be well represented by the Wilson model. The optimum Wilson parameters are used to calculate the vapor phase composition, activity coefficients, and excess Gibbs free energy. The results are discussed.  相似文献   

4.
Reported in this work are phase equilibrium data at high pressures for the binary and ternary systems formed by {propane + N,N-dimethylformamide (DMF) + methanol}. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method for obtaining the experimental bubble and dew points transition data over the temperature range of (363 to 393) K, pressures up to 11.5 MPa and overall mole fraction of the lighter component varying from 0.1 to 0.995. For the systems investigated, vapour–liquid (VLE), liquid–liquid (LLE) and vapour–liquid–liquid (VLLE) phase transitions were visually recorded. Results show that the systems investigated present UCST (upper critical solution temperature) phase transition curves with an UCEP (upper critical end point) at a temperature higher than the propane critical temperature. The experimental data were modelled using the Peng–Robinson equation of state with the Wong–Sandler and the classical quadratic mixing rules, affording a satisfactory representation of the experimental data.  相似文献   

5.
Bubble point temperatures (at 95.35 kPa) over the entire composition range were measured for the binary mixtures formed by ethyl benzene with: acetyl acetone, o-, and p-cresols, 1-hexanol, and tetraethoxysilane, employing a Swietoslawski type ebulliometer. Wilson equation was used to represent the measured liquid phase composition versus bubble point temperature data, and the computed values of the vapor phase mole fractions, activity coefficients, and excess Gibbs free energy were tabulated and briefly discussed.  相似文献   

6.
Phase transitions for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems are observed at their (liquid + liquid) equilibria at T = (563, 573, and 583) K and (8.6 to 25.0) MPa. The phase transition pressures at T = (563, 573, and 583) K were measured for the five species of light aromatic hydrocarbons, o-, m-, p-xylenes, ethylbenzene, and mesitylene. The measurements of the phase transition pressures were carried out by changing the feed mole fraction of water and 1-methylnaphthalene in water free, respectively. Effects of the feed mole fraction of water on the phase transition pressures are very small. Increasing the feed mole fraction of 1-methylnaphthalene results in decreasing the phase transition pressures at constant temperature. The slopes depending on the feed mole fraction for 1-methylnaphthalene at the phase transition pressures are decreased with increasing temperature for (water + 1-methylnaphthalene + p-xylene), (water + 1-methylnaphthalene + o-xylene), and (water + 1-methylnaphthalene + mesitylene) systems. For xylene isomers, the highest and lowest of the phase transition pressures are obtained in the case of p- and o-xylenes, respectively. The phase transition pressures for ethylbenzene are lower than those in the case of p-xylene. The similar phase transition pressures are given for p-xylene and mesitylene.  相似文献   

7.
Experimental (vapour + liquid) equilibrium results for the binary systems, (methanol + water) at the local atmospheric pressure of 95.3 kPa and at sub-atmospheric pressures of (15.19, 29.38, 42.66, 56.03, and 67.38) kPa, (water + glycerol) system at pressures (14.19, 29.38, 41.54, 54.72, 63.84, and 95.3) kPa and the (methanol + glycerol) system at pressures (32.02 and 45.3) kPa were obtained over the entire composition range using a Sweitoslwasky-type ebulliometer. The relationship of the liquid composition (x1) as a function of temperature (T) was found to be well represented by the Wilson model. Computed vapour phase mole fractions, activity coefficients and the measured values along with optimum Wilson parameters are presented.  相似文献   

8.
A computer-operated static apparatus has been used for the measurement of the bubble pressures of the (1,1,1,2-tetrafluoroethane + triethylene glycol dimethyl ether) system at temperatures between (283 and 323) K in the composition range where the first component is prevailing, i.e., mainly for a mole fraction in the liquid phase greater than 0.7. The chosen ranges cover the most interesting conditions for the technical applications of such a mixture in refrigeration plants. The obtained experimental data constitute a set of 125 points distributed along five isotherms. The data have been correlated using a Wilson model for the activity coefficient, reaching satisfactory results; in fact the average absolute value of the relative deviation of the experimental bubble pressure from the model is 0.16 · 10−2. At high temperatures, the mixtures with low content of triethylene glycol dimethyl ether show positive deviations from Raoult’s law, whereas the other cases are characterized by negative deviations.  相似文献   

9.
(Solid + liquid) equilibria (SLE) have been measured for naphthalene + o-dichlorobenzene, + m-dichlorobenzene, and + p-dichlorobenzene using differential scanning calorimetry (DSC) over the whole concentration range. It was found that the phase diagram of (naphthalene + m-dichlorobenzene) is of a simple eutectic type with the eutectic point at 244.85 K and 0.058 mole fraction of naphthalene, the phase diagram of (naphthalene + p-dichlorobenzene) is of a simple eutectic type with the eutectic point at 302.85 K and 0.390 mole fraction of naphthalene and in the system of (naphthalene + o-dichlorobenzene), a 1:1 incongruently melting compound is formed and that the phase diagram show a eutectic and a peritectic, the eutectic point is at 232.55 K and 0.130 mole fraction of naphthalene, the peritectic point at 250.15 K and 0.077 mole fraction of naphthalene. Furthermore, the activity coefficients of components in mixtures of (naphthalene + m-dichlorobenzene) and (naphthalene + p-dichlorobenzene) have been correlated by the Scatchard–Hildebrand solubility parameter expression. This approach offers a useful procedure for estimating with good accuracy.  相似文献   

10.
Recently, production of biocompatible and biodegradable polymer microparticles has been a matter of growing interest in pharmaceutical and food areas such as drug or active compounds delivery. To conduct production of microparticles, polymeric particle coating, impregnation of active compounds in polymeric films, the knowledge of phase behaviour involving the biodegradable polymer in supercritical carbon dioxide in the presence of a modifier may be needed to allow developing new industrial applications. In this sense, the aim of this work was to investigate the phase behaviour of the ternary system formed by the biodegradable polymer poly(ε-caprolactone) in (carbon dioxide + dichloromethane). Experimental phase transition (bubble and cloud point) values were obtained by applying the static-synthetic method using a variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 21 MPa, in the CO2 overall composition range of (25–46) wt%, while polymer concentrations studied were (1, 3, 5, and 7) wt%. For the system investigated, depending on the polymer concentration, vapour–liquid, liquid–liquid, and vapour–liquid–liquid phase transitions were verified.  相似文献   

11.
The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO3], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T = 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO3] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO3] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO3] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent.Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique–differential thermal analysis (TG–DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K.The (solid + liquid) phase equilibria, curves were correlated by means of different GEx models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Comparison of the solubilities of different ammonium salts in alcohols, in hexane, in benzene, and in water are discussed.  相似文献   

12.
A new isoquinolinium ionic liquid (IL) has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterization of synthesized compounds: N-isobutylquinolinium bromide, [BiQuin][Br] and N-isobutylquinolinium bis{(trifluoromethyl)sulfonyl}imide [BiQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [BiQuin][NTf2], i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at glass transition have been measured using a differential scanning microcalorimetry technique (DSC). Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 8 binary mixtures composed of organic solvent dissolved in the IL: {[BiQuin][NTf2] + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fraction and temperature from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with an immiscibility gap in the liquid phase existing at low mole fraction of the IL with a very high upper critical solution temperature (UCST). For mixtures with alcohols, complete miscibility was observed for 1-butanol and also an immiscibility gap with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed that with increasing chain length of an alcohol, the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

13.
This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K.Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy.For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase.Finally, the experimental data of interfacial tensions were smoothed with the Scott–Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.  相似文献   

14.
Bubble point measurements (at 95.6 kPa) over the entire composition range are carried out for the binary mixtures formed by 1-hexanol with the: nitro-compounds (acetonitrile, acrylonitrile N,N-dimethyl formamide and aniline) and substituted benzenes (o-xylene, chlorobenzene, and nitrobenzene), employing a Swietoslawski type ebulliometer. Wilson model is found to represent the measured liquid phase composition versus bubble point temperature data well. Computed values of the vapor phase mole fractions and liquid phase activity coefficients are tabulated and briefly discussed.  相似文献   

15.
This work is a continuation of our wide ranging investigation on quinolinium based ionic liquids (ILs). The study includes specific basic characterisation of the synthesized compounds N-octylquinolinium bromide, [OQuin][Br] and N-octylquinolinium bis{(trifluoromethyl)sulfonyl}imide [OQuin][NTf2] by NMR spectra, elementary analysis and water content. Differential scanning calorimetry (DSC) measurements gave us properties of the pure [OQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at the glass transition. Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 10 binary mixtures composed of organic solvent dissolved in the IL: {[OQuin][NTf2] + aromatic hydrocarbon (benzene, or thiophene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol, or 1-dodecanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (250 to 370) K. For mixtures with benzene and alkylbenzenes, the immiscibility gap in the liquid phase in a low mole fraction of the IL was observed with upper critical solution temperature (UCST) higher than the boiling point of the solvent. In the system with thiophene, the immiscibility gap is lower and UCST was measured. For binary mixtures with alcohols, complete miscibility in the liquid phase was observed for 1-butanol and 1-hexanol. In the systems with longer chain alcohols, the immiscibility gap with UCST was noted. Typical behaviour for ILs was observed with an increase of the chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

16.
《Fluid Phase Equilibria》2003,210(1):69-75
Vapour–liquid, liquid–liquid and liquid–liquid–vapour equilibria for the system 1,1,1,2-tetrafluoroethane + heptylbenzene were determined in the temperature range from 260 to 400 K and at pressures up to 12 MPa. The system was found to be a type II system according to the classification of Van Konynenburg and Scott. The (l2=l1)g critical endpoint was found at T=320.07 K and P=1.155 MPa. The mole fraction of heptylbenzene in the critical liquid phase in the critical endpoint is approximately 0.20.  相似文献   

17.
《Fluid Phase Equilibria》2004,218(2):261-267
Gas solubility of carbon dioxide in an aqueous solution of 32.5 wt.% N-methyldiethanolamine and 12.5 wt.% diethanolamine with 4, 6, and 10 wt.% 2-amino-2-methyl-1-propanol has been measured, at 313.15, 343.15, and 393.15 K, over a range of pressure from 3 to 2000 kPa, using a chromatographic method for analysis of the liquid phase. The results of the gas solubility are given as the partial pressure of CO2 against its mole ratio α (mol CO2/mol alkanolamine) and its mole fraction at each temperature studied. The solubility of CO2 in all the systems studied decreases with an increase in temperature and increases with an increase in the partial pressure of CO2 at a given temperature and it is a function of the concentration of the mixture of alkanolamines in solution. The enthalpy of solution of CO2 has been calculated from the experimental solubility data.  相似文献   

18.
The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{(trifluoromethyl)sulfonyl}imide [HQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {[HQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed, that with increasing chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibria data sets. For the systems containing immiscibility gaps, (IL + an alcohol) parameters of the LLE correlation were used to the prediction of SLE.  相似文献   

19.
Sr - doped NiO ceramic was studied. The effect of composition variation of Ni(1-x)SrxO where x = 0, 0.01, 0.02, 0.03, 0.05 and 0.10 mole % was prepared by using solid state method. The calcination temperature used at 950 °C for 4 hours and the sintering temperature used at 1200 °C for 3 hours. The results depict the microstructures increase in grains size (0.43 - 3.30 μm) by increase of Sr dopant contents. The density and porosity testing support the result of microstructures analysis. The larger grains size led to increase in density and lower in porosity. The dielectric properties is observed in a wide frequency range of (1 - 1 000 MHz). The increase of dielectric constant is associated with the decrease of dielectric loss. The optimum composition was obtained for the x = 0.03 mole % sample with highest dielectric constant (3.24 x 103) and lowest dielectric loss (1.42) at 1 MHz.  相似文献   

20.
《Fluid Phase Equilibria》2006,242(2):154-163
Phase equilibria, for the binary systems {n-alkanes (tridecane, octadecane, or eicosane), or cyclohexane, or 1-alkanol (1-hexadecanol, or 1-octadecanol, or 1-eicosanol) + 2,3-pentanedione} have been determined using a cryometric dynamic method at atmospheric pressure. The influence of pressure on liquidus curve up to 800 MPa was determined for (tridecane, or cyclohexane + 2,3-pentanedione) systems. A thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions (pressometry) was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high-pressure experimental results obtained at isothermal conditions (px) were interpolated to well known Tx diagrams.Immiscibility in the liquid phase was observed only for the n-alkanes mixtures. The solubility decreases with an increase of the number of carbon atoms in the n-alkane, or 1-alkanol chain. The higher intermolecular solute–solvent interaction was observed for the 1-alkanols.Experimental solubility results are compared with values calculated by means of the NRTL equation (n-alkanes) and the NRTL and UNIQUAC ASM equations utilizing parameters derived from SLE and LLE results. The existence of a solid–solid first-order phase transition in tridecane, eicosane and 1-alkanols has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σ < 1.0 K with both equations. The pressure–temperature–composition relation of the high-pressure (solid + liquid) phase equilibria, was satisfactorily presented by the polynomial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号