首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Non》2007,353(24-25):2374-2382
Glass materials in the ZnO–Fe2O3–SiO2 system, containing zinc ferrite nanoparticles, were prepared by the sol–gel method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, AC- and DC-magnetization techniques. The gel samples, dried at 130 °C, were further heat treated in air at 500 and 800 °C. At 500 °C zinc ferrite and hematite nanoparticles, with an average size of approximately 24 nm, were precipitated in the brown and opaque 10ZnO–10Fe2O3–80SiO2 and in the ruby colored transparent 5ZnO–5Fe2O3–90SiO2 and 2.5ZnO–2.5Fe2O3–95SiO2 glass matrices. In the 5ZnO–5Fe2O3–90SiO2 sample the nanoparticles exhibited ferro or ferrimagnetic interactions combined with superparamagnetism with a blocking temperature of approximately 14 K. Heating at 800 °C seems to cause partial dissolution of the zinc ferrite and hematite particles in all the investigated compositions. Accordingly at 800 °C the 5ZnO–5Fe2O3–90SiO2 glass shows a paramagnetic behavior down to 2 K.  相似文献   

2.
Monodisperse magnetite nanoparticles coated with organic ligands have been chemically synthesised by using the poliol method. Modifying the synthetic conditions, particle diameter can be tuned from 3.5 to 7.1 nm. In order to investigate the critical size effects on the magnetic behavior of the samples, Fe3O4 nanoparticles have been fully characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, SQUID magnetometry and electron paramagnetic resonance spectroscopy.  相似文献   

3.
《Journal of Non》2007,353(8-10):805-807
Co1−xZnxFe2O4 (x = 0, 0.2 and 0.4) fine powders with particles size of 3 nm were prepared by hydrolysis method. The powders were annealed at 500 °C for 3 h. With heat treatment, the average particles size increased to 12 nm with corresponding increase in blocking temperature, saturation magnetization and reduced remanence. A significant increase in coercive field was found only for the pure CoFe2O4.  相似文献   

4.
Transparent glasses of composition 10BaO.20Bi2O3.(70 ? x)B2O3.xFe2O3 (wt.%) where 0  x  2.0, were characterized by XRD and SEM. Physical, spectroscopic and dielectric properties were investigated. At higher dopant of Fe2O3, EPR results revealed that, the number of Fe3+ ions participate in the resonance is decreased by forming a new signal at g  3.015 due to increase of antiferromagnetic interaction of Fe3+ ions and/or formation of low spin Fe3+ ions in the glass matrix. With initial 0.5 wt.% doping of Fe2O3, less dense glass is formed with colloids of metallic Bi0 atoms. The absorption bands at 604 and 712 nm in F5 glass are ascribed to Bi0 and Bi+ radicals respectively. No characteristic Fe3+ absorption bands (spin-forbidden) are found. Fe2+ ions are increased at higher concentration of Fe2O3. Higher concentration of Fe2O3 is favorable for BO2O?, BO3, BiO6 and FeO6 symmetry unit leads to low band gap and high Urbach energy. By doping of Fe2O3 the dielectric parameters like dielectric constant (ε′), loss (tanδ and ac electrical conductivity (σac) are found to increase.  相似文献   

5.
《Journal of Non》2006,352(28-29):3035-3040
Perovskite-type LaMxFe1−xO3 (M = Ni, Co) nanoparticles were synthesized by a sol–gel method using propylene oxide as a gelation agent. The resulting nanoparticles show a narrow size distribution with particles in the 30–50 nm range. A highly homogeneous wet gel was formed during the hydrolysis and condensation of the precursor salts. This high homogeneity allows a substantial reduction of the calcination temperature and time required for the formation of the perovskite phase as compared with the solid-state and other wet solution routes, reducing drastically the aggregation of the particles during calcination.  相似文献   

6.
In the present study, a magnetic-zirconia nanocomposite was successfully synthesized by a single-step co-precipitation method. The as-prepared nanocomposite was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, powder X-ray diffraction, and nitrogen sorption measurements. The ultimate material was found to be Fe3O4–ZrO2 nanoparticles with average diameter of 80 nm, high surface area up to 166 m2/g, and strong magnetic property. The application of this new nanocomposite was herein demonstrated by the adsorption of ethyl methylphosphonic acid, a degradation product of nerve agent in water, followed by mass spectrometry detection. Excellent adsorption could be observed, indicating the as-synthesized material was effective to remove phosphonic acid compound from water. Apart from adsorption, the Fe3O4–ZrO2 nanocomposite is promising in various applications such as catalysis and bioseparation.  相似文献   

7.
Cobalt ferrite–poly(N-vinyl-2-pyrrolidone) nanocomposites were prepared by drying a dispersion of cobalt ferrite (CoFe2O4) nanoparticles and poly(N-vinyl-2-pyrrolidone). Magnetic measurements indicate a superparamagnetic behavior. Zero-field-cooling magnetization experiments at 100 Oe show different trends depending on the CoFe2O4 nanoparticles size. For the smaller ones (3.9 nm), the blocking temperatures shift to lower temperatures with increasing concentration; however, this shift is not observed for the larger ones (6.6 nm). These differences can be related to the anisotropy constant of the CoFe2O4 nanoparticles and the interparticle dipolar interactions.  相似文献   

8.
Nanosized iron core and barium titanate shell microstructure was generated within a silicate glass of composition 23.1 Na2O, 23.1 BaO, 23.0 TiO2, 7.6 B2O3, 5.8 Fe2O3, 17.4 SiO2 by first reducing it at 893 K for ½ h and then subjecting it to heat treatment at 759 K for 4 h. Transmission electron microscopy showed the composite particles to have a mean diameter of 3.9 nm. The nanocomposite exhibited both ferroelectric and ferromagnetic behavior. The dielectric constant peak was not prominent because of a small thickness of the barium titanate phase. The magnetic hysteresis loop showed an asymmetric behavior giving rise to a small exchange bias field. This is believed to arise due to exchange interaction between the ferromagnetic iron core and the thin layer of Fe3O4 on the core surface with a spin glass-like behavior. The magnetization under zero-field cooled (ZFC) and field cooled (FC) conditions indicated superparamagnetic behavior at temperatures higher than 300 K. The optical absorption spectra exhibited a peak at around 325 nm. This was analyzed satisfactorily on the basis of a metal core–oxide shell nanoconfiguration. The extracted values of metal core conductivity showed a metal insulator transition for iron core diameters less than 2.4 nm. The present synthesis approach will lead to newer multiferroic nanocomposites and glasses with multifunctionalities.  相似文献   

9.
《Journal of Non》2007,353(52-54):4783-4791
Phosphate glasses have been prepared by melting batch materials in electric furnaces, induction furnaces, and in microwave ovens. In the present work mixtures of (NH4)2HPO4 and Fe3O4 or Fe2O3 were exposed to microwave energy, heated to 1200 °C, and cast to produce iron phosphate glasses. Glasses were also produced in electric furnaces for comparison. The material was analyzed by X-ray diffraction, Mössbauer spectroscopy, and differential thermal analysis. For magnetite-based glasses produced in an electric furnace, the Fe2+/(Fe2+ + Fe3+) ratio is compatible with the value in the batch material. The Fe2+/(Fe2+ + Fe3+) ratio is higher for glasses produced in a microwave oven. Glasses with nominal composition 55Fe3O4–45P2O5 (mol%) produced in an electric furnace present an arranged magnetic phase with hyperfine field that could be associated to hematite (estimated to be 21%). All the glasses submitted to heat treatments for crystallization present the following crystalline phases: FePO4, Fe3(PO4)2, Fe(PO3)3, Fe(PO3)2 and Fe7(PO4)6. The amount of these phases depends on the glass composition, and glass preparation procedure. Microwave heating allows to reach melting temperatures at high heating rates, making the procedure easy and economical, but care should be taken concerning the final Fe2+/(Fe2+ + Fe3+) ratio.  相似文献   

10.
Ferrimagnetic glass–ceramics were prepared in the systems Fe2O3 CoO MnO2 (S1), Fe2O3 NiO MoO3 (S2) and Fe2O3 CoO V2O5 (S3). Small amount of H3BO4 was added to make the melting process easier. The samples were characterized using DTA, XRD, TEM and EDX. Sequence of crystallization was studied by applying heat-treatment at 800 and 1000 °C for 4 h. CoFe2O4 with crystallite sizes of ≈ 14–20 nm was successfully prepared beside FeCoOBO3 and Co3BO5 in S1. NiMoO4, (FeNi2)O2(BO3) and NiO with crystallite size ≈ 56–79 nm were crystallized in S2. CoFe2O4, FeCoOBO3 and Co3BO5 with crystallite size ≈ 6–8 nm were crystallized in S3. Magnetic hysteresis cycles were analyzed with a maximum applied field of 20 kOe at room temperature. From the obtained hysteresis loops Ms records higher values for S1 and S3 and lower value for S2, while coercivity reach maximum for S2. The variable, magnetic, data range gives a wide range for different applications.  相似文献   

11.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

12.
《Journal of Non》2005,351(40-42):3235-3245
The electrical and dielectrical properties of Bi2O3–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 4 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. With increasing Fe(II) ion content from 17% to 34% in the bismuth-free 39.4Fe2O3–59.6P2O5 and 9.8Bi2O3–31.7Fe2O3–58.5P2O5 glasses, the dc conductivity increases. On the other hand, the decrease in dc conductivity for the glasses with 18.9 mol% Bi2O3 is attributed to the decrease in Fe2O3 content from 31.7 to 23.5 mol%, which indicates that the conductivity for these glasses depends on Fe2O3 content. The conductivity for these glasses is independent of the Bi2O3 content and arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electronic conduction. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions. The Raman spectra show that the addition of up to 18.9 mol% of Bi2O3 does not produce any changes in the glass structure which consists predominantly of pyrophosphate units.  相似文献   

13.
The glass forming ability and magnetic properties of Nd5Fe68 ? xB23Mo4Yx (x = 0, 2, 4, 6) alloys prepared by copper mold casting technique have been studied. Amorphous rods with a diameter of 2 mm were obtained in the Nd5Fe64B23Mo4Y4 alloy. After annealing for 10 min at 1013 K, the Nd5Fe64B23Mo4Y4 alloy showed optimal hard magnetic properties with the coercivity of 764.2 kA/m, remanence of 0.6 T and maximum energy product of 57.3 kJ/m3, respectively. The enhanced magnetic properties can be ascribed to the strong exchange coupling among the magnetically soft α-Fe (25–30 nm), Fe3B (30–35 nm) and hard Nd2Fe14B (40–50 nm) grains present in the magnet microstructure. Large size bulk nanocomposite magnets with sound magnetic properties make the Nd–Fe–B–Mo–Y alloy system a promising candidate for industrial applications.  相似文献   

14.
《Journal of Non》2006,352(38-39):4069-4075
Glass melts with the basic compositions xLi2O · 15Al2O3 · (85  x)SiO2 (x = 8.5, 11, 13.5, 16 and 18.5) doped with 0.25 mol% Fe2O3 were studied by square-wave voltammetry and impedance spectroscopy at temperatures in the range from 1100 to 1600 °C. The square-wave voltammograms show a pronounced peak attributed to the reduction of Fe3+ to Fe2+. The attributed peak potentials which are equal to the standard potentials of the redox pair decrease linearly with the temperature. Impedance spectra measured could be simulated using an equivalent circuit attributed to a simple electron transfer reaction controlled by diffusion.  相似文献   

15.
《Journal of Non》2006,352(38-39):4082-4087
Liquids with the base compositions (16  x/2)Na2O · xNaF · 10CaO · 74SiO2 (x = 0, 1, 3, and 4) and (10  x/2) · Na2O · xNaF · 10CaO · yAl2O3 · (80  y)SiO2 (x = 0, 1, 3, 5 and y = 5 and 15) doped with 0.25 mol% Fe2O3 were studied by means of square-wave voltammetry in the temperature range from 1000 to 1500 °C. With increasing temperature, the redox equilibria were shifted to the reduced state. Also while increasing the alumina concentration, the Fe2+/Fe3+-redox equilibrium is shifted to the reduced state. In the soda-lime–silica melt the addition of fluoride shifts the equilibrium to the oxidized state, while in the aluminosilicate melts with 15 mol% Al2O3, the equilibrium is shifted to the reduced state. In the aluminosilicate melts with 5 mol% Al2O3, the equilibrium was not affected by the fluoride concentration. This is explained by the structure of the respective glass compositions.  相似文献   

16.
《Journal of Non》2007,353(47-51):4395-4399
The electrical properties of (40−x)ZnO–xFe2O3–60P2O5 (x = 10, 20, 30 mol%) glasses were measured by impedance spectroscopy in the frequency from 0.01 Hz to 4 MHz and the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. The increase in dc conductivity for these glasses is attributed to the increase in Fe2O3 content from 10 to 30 mol%. With increasing Fe(II) ion content from 6% to 17% the dc conductivity increases. This indicated that the conductivity arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electron conduction in these glasses. By applying scaling on conductivity data measured at different temperatures, single master curve was obtained for each glass. On the other hand, deviation from the master curve at high frequencies was observed for glasses with different compositions. This deviation originates from a various mobility of charge carriers in different glass structures. Raman spectra showed the change of structure, from metaphosphate to pyrophosphate, with increasing Fe2O3 content from 10 to 30 mol%.  相似文献   

17.
Lithium yttrium silicate glasses mixed with different concentrations of Fe2O3 of the composition (40 ? x) Li2O–10Y2O3–50SiO2: x Fe2O3, with x = 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 (all in mol%) were synthesized. Electrical and dielectric properties including dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, impedance spectra as well as electric moduli, M(ω), over a wide continuous frequency range of 40 Hz to 106 Hz and in the low temperature range 100 to 360 K were measured as a function of the concentration of Fe2O3. The dc conductivity is also evaluated in the temperature range 100 … 360 K. The temperature and frequency dispersions of dielectric constant as well as dielectric loss have been analyzed using space charge polarization model. The ac and dc conductivities have exhibited increasing trend with increasing Fe2O3 content beyond 0.5 mol%, whereas the activation energy for the conductivity demonstrated decreasing tendency in this dopant concentration range. Both quantum mechanical tunneling (QMT) and correlated barrier hopping models (CBH) were used for clarification of ac conductivity origin and the corresponding analysis has indicated that CBH model is more appropriate for this glass system. For the better understanding of relaxation dynamics of the electrical properties we have drawn the scaling plots for ac conductivity and also electric moduli. The plots indicated that the relaxation dynamics is independent on temperature but depends on concentration of Fe2O3. The dc conductivity is analyzed using small polaron hoping model. The increase of conductivity with the concentration of Fe2O3 beyond 0.5 mol% is explained in terms of variations in the redox ratio of iron ions in the glass network. The results were further analyzed quantitatively with the support of experimental data from IR, optical absorption and ESR spectral studies. The overall analysis has indicated that Li2O–Y2O3–SiO2 glasses containing more than 0.5 mol% of Fe2O3 are more suitable for achieving good electrical conductivity in these glasses.  相似文献   

18.
We report a systematic study of the localized surface plasmon resonance effects on the photoluminescence of Er3 +-doped tellurite glasses containing Silver or Gold nanoparticles. The Silver and Gold nanoparticles are obtained by means of reduction of Ag ions (Ag+  Ag0) or Au ions (Au3 +  Au0) during the melting process followed by the formation of nanoparticles by heat treatment of the glasses. Absorption and photoluminescence spectra reveal particular features of the interaction between the metallic nanoparticles and Er3 + ions. The photoluminescence enhancement observed is due to dipole coupling of Silver nanoparticles with the 4I13/2  4I15/2 Er3 + transition and Gold nanoparticles with the 2H11/2  4I13/2 (805 nm) and 4S3/2  4I13/2 (840 nm) Er3 + transitions. Such process is achieved via an efficient coupling yielding an energy transfer from the nanoparticles to the Er3 + ions, which is confirmed from the theoretical spectra calculated through the decay rate.  相似文献   

19.
《Journal of Non》2005,351(40-42):3246-3258
The effect of Fe2O3 content on electrical conductivity and glass stability against crystallization in the system PbO–Fe2O3–P2O5 has been investigated using Raman, XRD, Mössbauer and impedance spectroscopy. Glasses of the molar composition (43.3  x)PbO–(13.7 + x)Fe2O3–43P2O5 (0  x  30), were prepared by quenching melts in the air. With increasing Fe2O3 content and molar O/P ratio there is corresponding reduction in the length of phosphate units and an increase in the Fe(II) ion concentration, which causes a higher tendency for crystallization. Raman spectra of the glasses show that the interaction between Fe sites, which is essential for electron hopping, strongly depends on the cross-linking of the glass network. The electronic conduction of these glasses depends not only on the Fe(II)/Fetot ratio, but also on easy pathways for electron hopping in a non-disrupted pyrophosphate network. The Raman spectra of crystallized glasses indicate a much lower degree of cross-linking since more non-bridging oxygen atoms are present in the network. Despite the significant increase in the Fe2O3 content and Fe(II) ion concentration, there is a considerable weakening in the interactions between Fe sites in crystalline glasses. The impedance spectra reveal a decrease in conductivity, caused by poorly defined conduction pathways, which are result of the disruption and inhomogeneity of the crystalline phases that are formed during melting.  相似文献   

20.
Sodium tracer diffusion coefficients, D*Na, have been measured using the radioactive isotope Na-22 in sodium boroaluminosilicate (NBAS) glasses containing either a small amount of As2O3 or Fe2O3. The chemical compositions of the first type of glasses are given by the formula [(Na2O)0.71(Fe2O3)0.05(B2O3)0.24]0.2[(SiO2)x(Al2O3)1 ? x]0.8 and those of the second type of glasses correspond to the formula [(Na2O)0.73(B2O3)0.24(As2O3)0.03]0.18[(SiO2)x(Al2O3)1 ? x]0.82. Tracer diffusion measurements were performed at different temperatures between 198 and 350 °C. Pre-annealing of the glass samples at their glass transition temperatures in common air was found to lead to changes in the values of sodium tracer diffusion coefficients. For the NBAS glasses containing Fe2O3, after pre-annealing for 5 h, the activation enthalpy derived for the sodium tracer diffusion increases almost linearly from 57.5 to 71.3 kJ/mol with a decrease in the alumina content while the pre-exponential factor of the sodium tracer diffusion coefficient increases from 2.1 · 10? 4 to 5.3 · 10? 4 cm2/s. For the iron-free NBAS glasses pre-annealed for 5 h, the activation enthalpy varies between 63.9 and 71.4 kJ/mol while the pre-exponential factor varies between 1.5 · 10? 4 and 1.2 · 10? 3 cm2/s. In addition, it was observed that the considered glasses take up water when annealed at 300 °C in wet air with PH2O = 474 mbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号