首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yuan-Zheng Yue 《Journal of Non》2008,354(12-13):1112-1118
The glass transition temperature, Tg, directly measured by differential scanning calorimetry at 10 K/min is compared with the Tg indirectly determined by fitting viscosity data to a viscosity model for oxide glasses. The results show good match between the two Tg values. A standard, unified approach for measuring Tg is proposed. Characteristic temperatures of enthalpy relaxation in glass are defined, and the relationships between these temperatures are illustrated by performing aging and calorimetric experiments on hyperquenched glasses. The features of the energy release peak, the endothermic pre-peak, and the real glass transition are discussed with respect to their physical origins.  相似文献   

2.
Volume and enthalpy relaxation studies of amorphous Se have been performed in the glass transition region by mercury dilatometry and differential scanning calorimetry. For simple temperature jump experiments, as well as for more complex thermal history the volume and enthalpy relaxation data can be described by a single set of kinetic parameters for Tool-Naraynaswamy-Moynihan (TNM) model [Δh1/R = 42.8 kK, ln(ATNM/s) = ?133]. Slightly different non-linearity and non-exponentiality parameter were found for volume [x = 0.42, β = 0.58] and enthalpy [x = 0.52, β = 0.65] relaxation data. Similar results were obtained also for Adam-Gibbs-Scherer (AGS) model. The activation energy of viscous flow in the glass transition range is identical with the effective activation energy for relaxation process. A self-consistent data evaluation shows that at moderate departure from equilibrium, volume and enthalpy in amorphous selenium relax in the same way as expressed by TNM and AGS models. Both volume and enthalpy change can be interpreted within the same fictive temperature concept.  相似文献   

3.
《Journal of Non》2006,352(42-49):4517-4524
We describe the preparation and characterization of a glassy form of the moderately good glassformer PbGeO3, by mechanical damage, and compare its properties with those of the normal melt-quenched glass and the crystal. The damage-formed glass exhibits a DSC thermogram strikingly similar to that of a hyperquenched glass, implying that it forms high on the energy landscape. The final glass transition endotherm occurs within 4 K (0.006Tg) of that of the melt-quenched glass, but crystallization occurs at a lower temperature, as if pre-nucleated. In particular, we have studied the low frequency vibrational dynamics of the alternatively prepared amorphous states in the boson peak region, and find the damage-formed glass boson peak to be almost identical in shape to, but more intense than, that of the normal melt-formed glass, as previously found for hyperquenched glasses. In view of the quite different preparation procedures, this similarity would seem to eliminate equilibrium liquid clusters as a source of the boson peak vibrations, but leaves plausible a connection to force constant fluctuations or to specific vitreous state defects.  相似文献   

4.
《Journal of Non》2007,353(30-31):2938-2943
Both surface and bulk fictive temperatures of chlorine-containing silica glass were measured using the IR method, after thermal, mechanical and chemical treatments. A metastable equilibrium state at 1200 °C was first established for the glass by heat-treatment and a uniform fictive temperature was observed except for the sample surface created by polishing after the heat-treatment. The densified layer of the polished surface shifted the IR peak wavenumber, making the fictive temperature appear higher than the bulk. During the second heat-treatment at 950 °C, the sample with the as-heat-treated surface and uniform fictive temperature of 1200 °C developed non-uniform fictive temperature distribution with the bulk fictive temperature becoming lower than the surface fictive temperature. Usually, surface structural relaxation is faster than bulk structural relaxation and the surface fictive temperature becomes lower than the bulk fictive temperature when heat-treated at a lower temperature than the initial fictive temperature. The observed anomalous feature was attributed to chlorine volatilization from the glass surface layer creating a high viscosity surface layer. This conclusion was supported by the diffusion data of chlorine in the glass available in the literature.  相似文献   

5.
S. Striepe  J. Deubener 《Journal of Non》2012,358(12-13):1480-1485
Kinetic fragility indices m and F1/2 as well as glass transition temperature Tg of alkaline earth zinc phosphate melts of molar composition 20 MO–30 ZnO–50 P2O5 (with M = Ba, Sr, Ca, Mg) were determined using viscometry and differential scanning calorimetry (DSC). Beam bending and concentric cylinder experiments were performed to measure the flow resistance in temperature ranges above glass transition and close to liquidus, respectively. Different upscan rates of DSC runs through the glass transition were used to correlate changes of the fictive temperature with kinetic fragility. Both methods revealed that glass transition temperature correlates negatively and kinetic fragility positively with the size of M. Metal cation mixing (M + Zn) led to a negative deviation from linearity for Tg, while exchanging M resulted in a linear dependence of Tg, if scaled with averaged charge-to-distance ratio. The fictive temperature method overestimated the compositional dependence of m by a ratio up to 1.9.  相似文献   

6.
In situ heating experiments using high-energy, high-intensity synchrotron radiation, can be successfully designed to study structural evolution with temperature of glassy materials. Coherent diffraction from glassy materials forms a succession of halos or diffraction maxima in reciprocal space and the variation with temperature, of the wave-vector Qmax or angular position of the first diffracted intensity I(Qmax) maximum below Tg can be used to determine the iso-structural volume expansion. In the present work we have obtained synchrotron X-ray diffraction patterns in transmission during in situ heating of a B2O3 glass. Samples were obtained by melting the B2O3 glass rods which were then air-cooled or liquid nitrogen-cooled. The evolution with temperature (and time) of the position of the first diffraction maximum of the diffraction pattern accurately reflected the thermal expansion coefficient and the relaxation behavior of the B2O3 glass. Such results allowed determination by diffraction of the glass transition temperature, Tg, at 580 K, as well as information on the structural relaxation during thermal annealing. The total volume changes due to relaxation were measured to be about 1.5 vol.% and 2.5 vol.%, for the air-cooled and the liquid nitrogen-cooled B2O3 glass, respectively.  相似文献   

7.
A. Koike  M. Tomozawa 《Journal of Non》2008,354(45-46):4981-4990
It is known that surface structural relaxation of silica glass takes place more rapidly than bulk structural relaxation, especially in the presence of water vapor. The effect of water vapor pressure, heat-treatment temperature and initial fictive temperature on the surface structural relaxation kinetics in silica glasses was investigated by measuring the change of the surface fictive temperature determined from the IR reflection peak shift of silica structural bands. The superimposed component of bulk structural relaxation was subtracted from the measured surface structural relaxation data to isolate the true surface structural relaxation kinetics. The obtained surface structural relaxation data as a function of fictive temperature, heating temperature and water vapor pressure were simulated with a model based on the diffusion equation with time-dependent surface concentration. The simulation model was used to predict the surface structural relaxation kinetics of the optical fiber having a high fictive temperature of ~ 1650 °C at 950 °C under 355 torr of water vapor, and it was confirmed that the present model can simulate surface structural relaxation of the fiber reasonably well.  相似文献   

8.
Glass samples have been prepared in the NaPO3–KHSO4 binary system with the classical melting, casting and annealing steps. Electrical and dielectrical properties of glass samples were studied. Measurements of DC and AC conductivity and complex electrical permittivity of xNaPO3–(100 ? x)KHSO4 glass system were carried out at temperatures ranging from room temperature to temperature located 15 °C below glass transition temperature Tg. Results showed that changes of NaPO3 concentration considerably affect values of observed parameters. DC conductivity of glass increases as NaPO3 concentration grows until concentration x = 60. However, beyond this value a sharp decrease of DC conductivity was observed. In addition relaxation times showed abrupt changes at concentration x = 60, corresponding to the lowest relaxation times at the temperature 90 °C.  相似文献   

9.
《Journal of Non》2007,353(47-51):4384-4389
Lithium manganese spinels Li1+xMn2−xO4, 0  x  0.33, were prepared by wet chemistry technique followed by heat-treatment at 750 °C or 800 °C. Differential scanning calorimetry was used to reveal phase transitions. Electrical properties were studied by impedance spectroscopy. LiMn2O4 exhibited phase transition below room temperature. The transition, seen as an exothermic event in DSC and a steep decrease of conductivity upon cooling, was sharp in sample sintered at 800 °C and broadened over a range of temperature in sample sintered at 750 °C. In the low temperature phase of LiMn2O4, two relaxations of similar strength were observed in the frequency dependent permittivity. The low frequency process was identified as relaxation of charge carriers since the relaxation frequency followed the same temperature dependence as the dc conductivity. The high frequency process exhibited milder temperature dependence and was attributed to dipolar relaxation in the charge-ordered structure. The dipolar relaxation was barely visible in Li substituted samples, x  0.05, which did not undergo structural phases transition. Measurements extended to liquid nitrogen temperature showed gradual lowering of the activation energy of conductivity and relaxation frequencies, behavior typical for phonon-assisted hopping of small polarons.  相似文献   

10.
《Journal of Non》2007,353(32-40):3254-3259
The speed of longitudinal sound waves at 7 and 22 MHz has been measured in liquid, supercooled, and amorphous selenium, including the region around the glass transition temperature, Tg, near 35 °C. In amorphous selenium the speed of shear waves at 7 MHz was also measured. The experiments were performed with high purity Se (99.9999%) hermetically sealed in an evacuated silica ampoule. Four temperature regions with strongly different relaxation times can be distinguished between room temperature and the melting point: (1) a glassy state below Tg, which is stable on the time scale of the experiments, (2) a glassy state above Tg, which is metastable on the time scale of the experiments, (3) a region where homogeneous crystal nucleation occurs, and (4) a supercooled liquid, which is stable on the time scale of the experiments. Each region is marked by a change in the slope of the temperature dependence of the sound velocity. Near the glass transition temperature the velocities of longitudinal and transverse sound exhibit hysteresis with a step-like drop on heating and a more continuous rise on cooling. The step-like anomaly in sound velocity may be a general property of the glass transition.  相似文献   

11.
12.
《Journal of Non》2006,352(42-49):4946-4955
Dimensional (D) and enthalpy relaxation (ΔH) of oriented polymer glasses (PS and PC) have been studied as function of temperature, between Tg and Tg−20 °C, and aging time t, ranging to several weeks. The dimensional relaxation (shrinkage) and enthalpy relaxation curves verify the logarithm law D(t)  H(t)  log t, between an incubation τi and a final relaxation time τf. The time τf to reach the equilibrium (D and ΔH) follows the Vogel–Tamann–Fulcher (VFT) law. Enthalpy relaxation and shrinkage exhibit important differences. Enthalpy relaxation of oriented and isotropic polymers follows the same logarithm law, independent of the draw ratio λ and the mode of deformation, the relaxation time τf coincides with the relaxation time of the α segmental motions. Shrinkage depends on λ and the mode of deformation, the relaxation time τf is attributed to the normal mode, the relaxation time of the whole chain. Finally the shrinkages of PS and PC show some differences. PC at short aging times presents another type of dimensional relaxation which would be due to the β motions. This would be in close connection with the ductile (PC) and fragile (PS) behavior of these two polymers far below Tg.  相似文献   

13.
《Journal of Non》2007,353(18-21):2004-2007
The lithium borosilicate system (Li2O)0.4(B2O)(0.6x)(Si2O4)0.6(1−x) with x = 0, 0.2, 0.3, 0.4, 0.6, and 0.8 was investigated using impedance spectroscopy. Impedance spectra were taken in the frequency range from 50 Hz to 1 MHz and in the temperature range from 100 to 280 °C. The ac- and dc-conductivity, relaxation frequency and activation energy of the dc-conductivity were extracted from the impedance spectra. The dc-conductivity of the investigated glass samples increases almost linearly from silica rich (x = 0) to the boron rich (x = 0.8) samples. Activation energy (Ea) was found to be 0.65 eV for high conducting sample and 0.8 eV for low conducting sample, respectively. The mixed glass-former effect was not observed on the samples studied. The effect of temperature scaling of ac-conductivity was observed, which indicates, that ionic conductivity relaxation mechanism is temperature independent for samples with x = 0, 0.2, 0.3. However, some deviations from scaling were found for the samples with higher x (x = 0.4, 0.6, 0.8).  相似文献   

14.
The crystallization parameters such as glass transition temperature (Tg), onset crystallization temperature (Tc), peak crystallization temperature (Tp) and enthalpy released (ΔHC) of the bulk Se–Te chalcogenide glass has been studied by using Differential Scanning Calorimeter (DSC), under non-isothermal condition at a heating rate of 20 K/min. The values of Tg, Tc, Tp and ΔHC with and without laser irradiation for different exposure time have been studied. The optical absorption of pristine and laser irradiated thermally evaporated Se–Te films has been measured. The films shows indirect allowed interband transition that is influenced by the laser irradiation. The optical energy gap has been found to decrease from 1.61 to 1.38 eV with increasing irradiation time from 5 to 20 min. The results have been analyzed on the basis of laser irradiation-induced defects in the film.  相似文献   

15.
《Journal of Non》2007,353(44-46):4001-4010
The temperature dependence (25–1400 °C) of 27Al NMR spectra and spin–lattice relaxation time constants T1 have been studied for a calcium aluminosilicate (43.1CaO–12.5Al2O3–44.4SiO2) glass and melt using an in situ high temperature probe, and the glass has been characterized by ambient temperature, high field MAS NMR. The peak positions and the line widths show a consistent behavior as motional averaging of the quadrupolar satellites increases with increasing temperature. The rate of decrease with temperature of T1 drastically increases near the glass transition temperature Tg, which suggests a change in NMR relaxation process from vibrational to translational motions. Above the T1 minimum (≈1200 °C), NMR correlation times obtained from T1 are in good agreement with shear relaxation times estimated from viscosity, suggesting that microscopic nuclear spin relaxation is controlled by the same dynamics as macroscopic structural relaxation, and thus that atomic-scale motion is closely related to macroscopic viscous flow.  相似文献   

16.
《Journal of Non》2006,352(6-7):704-708
Effect of 60Co γ-irradiation on As–Se glasses stored for 20 years and subjected to saturated natural physical aging is studied using differential scanning calorimetry. It is shown that γ-irradiation activates further physical aging, which leads to an increase in glass transition temperature and endothermic peak area near glass transition region for AsxSe100−x samples with x < 30. The observed changes are associated with additional structural relaxation of radiation-modified glass network.  相似文献   

17.
Based on thermodynamic characteristics of the stable metallic liquid at melting temperature and the supercooled liquid, the present work calculated the mixing enthalpy ΔHmix, the mixing entropy ΔSmix and the Gibbs free energy difference between the supercooled liquid and the resulting crystalline phases ΔG of typical Ti-based amorphous alloys. The results show that for the case of larger ΔSmix, moderate ΔHmix for the stable liquid and smaller ΔG for the supercooled liquid, Ti-based alloys tend to achieve high glass-forming ability (GFA). A new parameter, β, defined as (Tg ? Tk)/(Tl ? Tg), has been introduced to evaluate the GFA of Ti-based bulk amorphous alloys (wherein Tg, Tl, and Tk represent the glass transition temperature, the liquidus temperature, and the Kauzmann temperature, respectively). Experimental data imply that the larger the β, the better the GFA for Ti-based amorphous alloys.  相似文献   

18.
Raman spectroscopy is used to characterize the NbF5 phases in the temperature range 80–500 K. A new clear glass is formed by quenching the melt to liquid nitrogen temperatures having a glass transition at ~206 K and crystallization at ~233 K. For all phases including the melt, the glass, the supercooled liquid, the crystalline solid and the gas, the Raman spectra show a rather common high frequency band at ~760 cm?1 which is attributed to the Nb–F terminal frequency of partially bridged ‘NbF6’ octahedra. Based on the systematics of the Raman spectra for all phases and the literature physicochemical data a model is proposed for the glass and the liquid phases where ‘NbF6’ octahedral bridged in cis and/or trans configurations form a variety of cyclic and/or chain structures which intermix building up the overall structure. At exceptionally low energies (<11 cm?1) a rather weak in intensity Boson peak is observed in the glass which shifts to even lower energies with increasing temperature. Librational and/or tortional motions of the bridged octahedra participating in the glass structure are possible candidates for the origin of this peak.  相似文献   

19.
Thermal diffusivity (D) at high temperature (T) was measured from 15 samples of commercial SiO2 glasses (types I, II, and III with varying hydroxyl contents) using laser-flash analysis (LFA) to isolate vibrational transport, in order to determine effects of impurities, annealing, and melting. As T increases, Dglass decreases, approaching a constant (~ 0.69 mm2s? 1) above ~ 700 K. From ~ 1000 K to the glass transition, the slope of D is small but variable. Increases of D with T of up to 6% correlate with either low water and/or low fictive temperature and are attributed to removal of strain and defects during annealing. Upon crossing the glass transition, D substantially decreases to 0.46 mm2s? 1 for the anhydrous melt. Hydration decreases Dglass, makes the glass transition occur over wider temperature intervals and at lower T, and promotes nucleation of cristobalite from supercooled melt. Due to the importance of thermal history, a spread in D of about 5% occurs for any given chemical type. Combining prior steady-state, cryogenic data with our average results on type I glass provides thermal conductivity (klat = ρCPD) for type I: klat increases from ~ 0 K, becoming nearly constant above 1500 K, and drops by ~ 30% at Tg. We find that D? 1(T) correlates with thermal expansivity times temperature from ~ 0 K to melting due to both properties arising from anharmonicity.  相似文献   

20.
《Journal of Non》2007,353(5-7):473-476
In this study, FTIR FPA (focal plan array) detector was used to image the ‘bond-stretching’ vibration mode observed near σ = 1120 cm−1 of highly Ge-doped graded index multimode optical fibers (GI-MMF). Next, as calibration curves between σ and the fictive temperature Tf are not available in the literature for highly Ge-doped glasses (above 7 wt%), we have determined our own calibration curves from 1 to 30 wt% in Ge. Then, we have applied these corrections to our σ measurements in GI-MMF in order to estimate, for the first time to our knowledge, the fictive temperature distribution within MMF cross-section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号