首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
《Journal of Non》2007,353(13-15):1397-1401
Fluorescence spectra and decay curves of the 5D0 level for different concentrations of Eu3+ (4f6) ions in K–Ba–Al fluorophosphate glasses have been measured at room temperature and are analyzed. The Judd–Ofelt intensity parameters Ω2 and Ω4 have been determined from the intensity ratios of emission peaks corresponding to 5D0  7FJ (J = 2 and 4) to 5D0  7F1 transitions for 1.0 mol% glass. The intensity parameters thus obtained are in turn used to calculate the radiative properties of the fluorescent levels of Eu3+ ions. Second and fourth rank crystal-field parameters have been evaluated by assuming a C2V site symmetry for the local environment of Eu3+ ions to estimate the crystal-field strength experienced by Eu3+ ions in the present host. The decay profiles of the 5D0  7F2 transition of Eu3+ ions in the present glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with Eu3+ ion concentration up to 2.0 mol% and then the lifetime marginally decreases for higher Eu3+ ion concentrations.  相似文献   

2.
《Journal of Non》2007,353(13-15):1402-1406
Fluorophosphate glasses of composition P2O5–K2O–MgO–Al2O3–AlF3 and P2O5–K2O–MgO–Al2O3–BaF2 were prepared with different Nd3+ ion concentrations. The absorption and emission spectra in the UV–VIS–NIR region were measured for these glasses. Judd–Ofelt analysis has been carried out using the absorption spectra of 1.0 mol% Nd3+-doped glasses to evaluate the radiative properties for some luminescent levels of the Nd3+ ion. The stimulated emission cross-sections of the 4F3/2  4I11/2 laser transition for the present glasses are found to be higher than for other Nd3+-doped glasses. Branching ratio calculations also revealed the potentiality of the 4F3/2  4I11/2 transition for laser action in these glasses. The observed concentration quenching of the lifetime of the 4F3/2 level is explained as a result of cross-relaxation process between the Nd3+ ions.  相似文献   

3.
《Journal of Non》2006,352(32-35):3598-3602
Thermal lens (TL) measurements were performed in tellurite glasses, 70TeO2–19WO3–7Na2O–4Nb2O5 (mol%), undoped, doped with Er3+ (1.19 × 1020 ions/cm3) and co-doped with Er3+ (1.19 × 1020 ions/cm3)/Tm3+ (1.56 × 1020 ions/cm3). The absolute nonradiative quantum efficiency (ϕ) was determined by the TL method. The ϕ values for Er3+/Tm3+-co-doped and Er3+-doped tellurite glasses were 0.98 and 0.74, respectively. Fluorescence spectra were performed at λe = 488 nm and used to estimate the fluorescence quantum efficiency (η) using the TL results. These values were compared with results obtained by Judd–Ofelt calculations.  相似文献   

4.
《Journal of Non》2006,352(21-22):2090-2095
Novel oxyfluoride glasses SiO2–Al2O3–Na2O–ZnF2 doped with Er3+ and Er3+/Yb3+ were fabricated. The optical properties of the synthesized glasses were experimentally and theoretically investigated in detail. The experimental and calculated oscillator strengths of Er3+ were determined by measurement of the absorption spectrum of Er3+-singly doped glass. According to the Judd–Ofelt theory, the experimental intensity parameters were calculated, from which the radiative transition probabilities, fluorescence branching ratios and radiative lifetimes were obtained. The fluorescence lifetime and quantum efficiency for the near-infrared emission of Er3+-singly doped glass were determined to be 3.0 ms, and 42%, respectively. Visible upconversion luminescence was observed under 980 nm diode laser excitation. The dependence of the upconversion emission intensity upon the excitation power was examined, and the upconversion mechanisms are discussed.  相似文献   

5.
Sodium-iron fluorophosphate glasses have been prepared by the action of NaPO3 on FeF3 in a fluorinated reducing atmosphere. Optical absorption spectra show the presence of 6-coordinated Fe2+ and Fe3+ ions. Magnetic ordering occurs for iron-rich samples at low temperature.  相似文献   

6.
《Journal of Non》2006,352(23-25):2360-2363
We report experimental results on the characterization of microspherical cavities fabricated in Er3+-doped modified-silica and phosphate glasses. The spectroscopic properties of the bulk precursor glasses as compared to the obtained microspheres were investigated by photoluminescence spectroscopy and lifetime measurement for the 4I13/2  4I15/2 transition of Er3+ ions. In both types of glasses we demonstrate whispering gallery mode laser action at various wavelengths around 1550 nm by using a 1480 nm pump laser coupled through a tapered fiber.  相似文献   

7.
The low-temperature 4I1524S32 absorption spectrum of a series of binary alkali silicate glasses doped with Er3+ shows the presence of four different sites for the Er3+. The near-octahedral A site reported in Part I of this series is the principal site and is present in all these glasses. The B site appears in the binary lithium and sodium silicate glasses. The binary potassium, rubidium and cesium glasses show the presence of the C and D sites. The C site absorption spectrum is similar to that found by Gruber et al. for Er3+ in Er2O3. The D site is probably a variation of the B site. Tentative sixfold-coordinated models are suggested for the B and D sites.  相似文献   

8.
《Journal of Non》2005,351(43-45):3468-3475
Luminescence properties and upconversion studies of germanate glasses in ternary GeO2–PbO–Bi2O3 and binary GeO2–Bi2O3 systems containing Er2O3 (0.1–1.0 wt%) are presented for the first time. The Judd-Ofelt parameters found for these glasses are: Ω2 = 4.50 × 10−20 cm2, Ω4 = 1.55 × 10−20 cm2 and Ω6 = 0.69 × 10−20 cm2 for binary glasses and Ω2 = 4.44 × 10−20 cm2, Ω4 = 1.82 × 10−20 cm2 and Ω6 = 0.39 × 10−20 cm2 for ternary glasses. The refractive index of these glasses is found to be ∼2. The transition 4I13/2  4I15/2 is peaked at ∼1.53 μm and shows a radiative lifetime around 5 ms. Both systems exhibit similar emission cross-section at 1.53 μm around 0.8 × 10−20 cm2. Upconverted green emission at ∼530 nm (2H11/2  4I15/2) and ∼550 nm (4S3/2  4I15/2) and red emission at ∼668 nm (4F9/2  4I15/2) are observed under 980 nm cw excitation. Our results suggest that these glasses are promising candidates for applications in photonics.  相似文献   

9.
《Journal of Non》2007,353(13-15):1377-1382
Near infrared (NIR) to visible upconversions of a fluorophosphate glass of composition (mol%) 7Ba(PO3)2–32AlF3–30CaF2–18SrF2–13MgF2 doped with various concentrations (0.1, 0.3 and 1.0 mol%) of Ho2O3 have been investigated by exciting at 892 nm at room temperature. Three upconverted bands originated from the 5F3  5I8, (5S2, 5F4)  5I8 and 5F5  5I8 transitions have been found to center at 491 nm (blue), 543 nm (green) and 658 nm (red), respectively. These bands have been justified from the evaluation of the absorption, normal (down conversion) fluorescence and excitation spectra. The upconversion processes have been interpreted by the excited state absorption (ESA), energy transfer (ET) and cross relaxation (CR) mechanisms involving population of the metastable (storage) energy levels by multiphonon deexcitation effect. It is evident from the infrared reflection spectral (IRRS) analysis that the upconversion phenomena are expedited by the low multiphonon relaxation rate in fluorophophate glasses owing to their high intense low phonon energy of ∼600 cm−1 which is very close to that of fluoride glasses (500–600 cm−1).  相似文献   

10.
Measurements of optical absorption and emission spectra of Nd3+ in lead phosphate glasses at 295 K are compared with results reported earlier for various metaphosphate glasses. The Judd-Ofelt intensity parameters for high-lead-content phosphate glasses are the smallest observed thus far for metaphosphate glasses with divalent network modifier cations.  相似文献   

11.
The photoluminescence properties of different concentrations of Sm3+ ions doped sodium fluoroborate (SFB) glasses of composition Na2O–LaF3–CaF2–AlF3–B2O3–SmF3 have been investigated. The energy level analysis is carried out using free-ion Hamiltonian model. The Judd–Ofelt intensity parameters are used to evaluate the laser characteristic parameters such as spontaneous transition probability, radiative lifetime and fluorescence branching ratio for 4G5/2  6HJ (J = 5/2, 7/2, 9/2 and 11/2) emission transitions of Sm3+ ion. The principal photoluminescence transitions of interest are identified by recording the emission spectra for different Sm3+ ion concentrations and measuring their emission cross-sections, integrated absorption cross-sections and optical gain parameters. The decay profiles from the 4G7/2 excited manifold state to its lower lying energy levels have been recorded by monitoring the excitation and emission wavelengths at 402 and 600 nm, respectively. The dependence of effective fluorescence lifetime on the Sm3+ concentration is also discussed.  相似文献   

12.
《Journal of Non》2006,352(32-35):3636-3641
Sodium phosphoniobate glasses with the composition (mol%) 75NaPO3–25Nb2O5 and containing 2 mol% Yb3+ and x mol% Er3+ (0.01  x  2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 μm and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 μm emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+–Er3+ energy transfer processes.  相似文献   

13.
《Journal of Non》2007,353(13-15):1383-1387
The spectroscopic properties of Er3+-doped alkali tellurite TeO2–Na2O glasses are investigated. Infrared-to-visible upconversion emission bands are observed at 410, 525, 550 and 658 nm using 797 nm excitation wavelength. These bands are assigned to the 2H9/2  4I15/2, 2H11/2  4I15/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transition, respectively. The power dependence study reveals that the 2H9/2  4I15/2 transition involves a three-step process while the other upconversion transitions involve only two steps. An excitation with 532 nm wavelength, two upconversion bands are observed in the UV region at 380 and 404 nm in addition to bands in the visible region at 410, 475, 525, 550, 658 and 843 nm. These bands are ascribed to 4G11/2  4I15/2, 2P3/2  4I13/2, 2H9/2  4I15/2, 2P3/2  4I11/2, 2H11/2  4I15/2, 4S3/2  4I15/2, 4F9/2  4I15/2 and 4S3/2  4I13/2 transition, respectively. Increasing Er3+ concentration leads to a rapid growth in the intensity of red emission relative to that for the green emission. An explanation for this observation has been suggested. The temperature dependence profile for the two thermally coupled levels (2H11/2, 4S3/2) shows that they can be used for measuring the temperature.  相似文献   

14.
Rare earth (RE)-doped chalcogenide glasses are an important promising material for active photonic devices, including mid-infrared (mid-IR) fiber lasers and amplifiers. Here we report on dysprosium ion (Dy3+)-doped GeAsGaSe chalcogenide glasses based on 10 atomic (at.) % Ga. A series of Dy3+-doped GeAsGaSe glasses, with increasing levels of Dy3+ dopant from 0 ppm to 2000 ppm added to the Ge16.5As9Ga10Se64.5 (at. %) base glass, is synthesized and characterized using: Fourier transform infrared spectrometry; X-ray diffraction (XRD); imaging and analysis using a high resolution transmission electron microscope, with selected area electron diffraction (HRTEM-SAED), and energy dispersive X-ray spectroscopy (HRTEM-EDX) and an environmental scanning electron microscope with energy dispersive X-ray spectroscopy (ESEM-EDX) and with secondary electron mapping. At the higher levels of Dy3+ doping, the glasses exhibit bulk crystallization; XRD, HRTEM-EDX and ESEM-EDX indicate the crystals are predominantly a modified, face centered cubic α-Ga2Se3, with some substitution of Ge. In addition, features on the bulk glass surface are shown to comprise Dy3+, sometimes accompanied by Si and [O] which, it is suggested, are due to contamination from the silica glass melting ampoule.  相似文献   

15.
《Journal of Non》2006,352(50-51):5344-5352
Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 μm diodes because of low phonon energies. Spectroscopic analysis indicates low non-radiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.  相似文献   

16.
Gao Tang  Huihua Xiong  Wei Chen  Lan Luo 《Journal of Non》2011,357(11-13):2463-2467
The Sm3+-doped low-phonon-energy (LPE) Ge–Ga–Se–CsI glasses were studied. Upon excitation at 980 nm diode laser, intense 1.25 and 1.49 μm near-infrared fluorescence bands with broad full width at half maximum (FWHM) of 49 and 53 nm were observed, respectively. About 180–300 μs fluorescence lifetimes were obtained for the 1.49 μm emission. The thermal properties and structure of glasses were investigated by differential thermal analysis (DTA) and Raman spectra, respectively. Spectroscopic characteristics of the optical transitions have been calculated by using the Judd–Ofelt theory and evaluated for excited levels.  相似文献   

17.
《Journal of Non》2007,353(13-15):1350-1353
Effects of CsI content on the optical properties of Ge30Ga5Sb5Se60 glasses were evaluated. Linear and non-linear absorption properties of the glasses without Pr3+ were examined in addition to 1.6 μm emission properties of the Pr-doped glasses. Blueshift of the UV-side absorption edge was accompanied with increasing CsI concentration, while non-linear absorption coefficients measured at 1.06 μm by the Z-scan method remained unaffected. Measured lifetimes of the 1.6 μm emission from modified glasses were comparable to those of the unmodified glass. These experimental observations are discussed in connection with a pronounced weak absorption tail appeared in selenide glasses with the addition of CsI.  相似文献   

18.
Neodymium-doped fluorophosphate glass is a laser material newly-developed for use in high power laser fusion systems. The low refractive index (nd ~ 1.45) and low dispersion (Abbe number ~90) of fluorophosphate glasses give them the properties of low nonlinear refractive indices and long Nd3+ fluorescence lifetimes, which are desirable for the high power laser applications. We have measured the intensity gain of 1.052 and 1.064 nm laser light produced by flashlamp-pumped fluorophosphate glass amplifiers, varying in size from 4–34 clear aperture. The measured gains are compared with those measured in other laser glass types and with those predicted from the spectroscopic properties of Nd3+. We estimate that the peak cross section for the 4F324I1112 transition in commercial fluorophosphate laser glasses is ~2.2 × 10?20 cm2.  相似文献   

19.
20.
The feasibility of a photonic crystal fiber laser (PCF laser), made of a novel Er3+-doped chalcogenide glass and operating at the wavelength λs = 4.5 μm is investigated. The design is performed on the basis of spectroscopic and optical parameters measured on a fabricated Er3+-doped Ga5Ge20Sb10S65 chalcogenide bulk sample. The simulations have been performed by employing a home made numerical code that solves the multilevel rate equations and the power propagation equations via a Runge-Kutta iterative method. The numerical results indicate that a laser exhibiting slope efficiency close to the maximum theoretical one and a wide tunability in the wavelengths range where the atmosphere is transparent can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号