首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The buckling of an elastic plate with arbitrary shape flush-mounted on a rigid wall and deforming under the action of a uniform tangential load due to an overpassing simple shear flow is considered. Working under the auspices of the theory of elastic instability of plates governed by the linear von Kármán equation, an eigenvalue problem is formulated for the buckled state resulting in a fourth-order partial differential equation with position-dependent coefficients parameterized by the Poisson ratio. The governing equation also describes the deformation of a plate clamped around the edges on a vertical wall and buckling under the action of its own weight. Solutions are computed analytically for a circular plate by applying a Fourier series expansion to derive an infinite system of coupled ordinary differential equations and then implementing orthogonal collocation, and numerically for elliptical and rectangular plates by using a finite-element method. The eigenvalues of the resulting generalized algebraic eigenvalue problem are bifurcation points in the solution space, physically representing critical thresholds of the uniform tangential load above which the plate buckles and wrinkles due to the partially compressive developing stresses. The associated eigenfunctions representing possible modes of deformation are illustrated, and the effect of the Poisson ratio and plate shape is discussed.  相似文献   

2.
The torsional buckling of a plastically deforming cruciform column under compressive load is investigated. The problem is solved analytically based on the von Kármán shallow shell theory and the virtual work principle. Solutions found in the literature are extended for path-dependent incremental behaviour as typically found in the presence of the vertex effect that is present in metallic polycrystals.At the critical load for buckling the direction of straining changes by an additional shear component. It is shown that the incremental elastic–plastic moduli are spatially nonuniform for such situations, contrary to the classical J2 flow and deformation theories. The critical shear modulus that governs the buckling equation is obtained as a weighted average of the incremental elastic–plastic moduli over the cross-section of the cruciform.Using a plasticity model proposed by the authors, that includes the vertex effect, the buckling-critical load is computed for a aluminium column both with the analytical model and a FEM-based eigenvalue buckling analysis. The stable post-buckling path is determined by the energy criterion of path-stability. A comparison with the experimentally obtained classical results by Gerard and Becker (1957) shows good agreement without relying on artificial imperfections as necessary in the classical J2 flow theory.  相似文献   

3.
The small-scale effect on the torsional buckling of multi-walled carbon nanotubes coupled with temperature change is investigated in this paper. A nonlocal multiple-shell model for the multi-walled carbon nanotubes surrounded an elastic medium under torsional and thermal loads is established, and then general solutions are obtained from the governing equations. The influence of the nonlocal effect on critical shear force and change in temperature is investigated. It is demonstrated that the critical shear force could be overestimated by the classical continuum theory and the nonlocal effect on critical buckling force decreases as the change in temperature increases at room or low temperature but increases as the change in temperature increases at higher temperature. Meanwhile, the effect of small size-scale is dependent on the buckling mode under different thermal environments. It is also shown that the innermost radius and the number of layer can affect the small-scale effect on critical change in temperature and buckling shear force. When the ratio of tube length and outmost radius are given, the critical shear force in each layer decreases and the nonlocal effect on the critical shear force becomes weaker as the innermost radius and the layer number increase.  相似文献   

4.
分析了嵌入无限大弹性板中的圆板在变温时的热屈曲问题。由于圆板的热膨胀系数与无限大弹性板的热膨胀系数不同,温度变化时圆板中会产生压应力。当压应力达到其临界值时,圆板会发生热屈曲。首先,基于弹性力学平面应力问题的基本理论,得到圆板和无限大弹性板的应力和位移;然后建立圆板热屈曲的控制微分方程,求得临界屈曲温度的解析解和数值解,着重讨论圆板和无限大弹性板的材料物性参数的关系对圆板临界屈曲温度的影响。  相似文献   

5.
???????????????????????о?   总被引:1,自引:1,他引:1  
一定长度的薄壁构件在纵向或横向荷载作用下,未达到材料极限破坏前就有 可能发生弹性弯扭屈曲失稳的问题. 分析了工字型截面悬臂钢梁的此类问题,应用平衡 法和能量法导出构件在轴向和横向荷载作用下的弹性弯扭屈曲微分方程,利用里兹法求其临 界载荷,并确定截面固定时的极限特征长度.  相似文献   

6.
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress,the modified couple stress theory(MCST),and the nonlocal elasticity theories using the differential quadrature method(DQM)is presented.Main advantages of the MCST over the classical theory(CT)are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter.Based on the nonlinear von K′arm′an assumption,the governing equations of equilibrium for the micro-classical plate considering midplane displacements are derived based on the minimum principle of potential energy.Using the DQM,the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained.Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature.A parametric study is conducted to show the effects of the aspect ratio,the side-to-thickness ratio,Eringen’s nonlocal parameter,the material length scale parameter,Young’s modulus of the surface layer,the surface residual stress,the polymer matrix coefficients,and various boundary conditions on the dimensionless uniaxial,biaxial,and shear critical buckling loads.The results indicate that the critical buckling loads are strongly sensitive to Eringen’s nonlocal parameter,the material length scale parameter,and the surface residual stress effects,while the effect of Young’s modulus of the surface layer on the critical buckling load is negligible.Also,considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate.The results show that the critical biaxial buckling load increases with an increase in G12/E2and vice versa for E1/E2.It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude.Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios,it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.  相似文献   

7.
We study the elastic stability of infinite inhomogeneous thin plates on an elastic foundation under in-plane compression. The elastic stiffness constants depend on the coordinate variable in the thickness direction of the plate. The elastic foundation is represented as a Winkler-type model characterized by linear and nonlinear spring constants. First we derive the Föppl–von Kármán equations by taking variations of the elastic strain energy. Next we develop the linear stability analysis of the plate under uniform in-plane compression and explicitly derive the critical loads and wave numbers for particular three cases. The effects of the material inhomogeneity, material orthotropy and loading orthotropy on the critical states are examined independently. Finally, we perform a weakly nonlinear analysis of the plate at the onset of the buckling instability. With the multiple scales method, the amplitude equations for the unstable modes that provide insight into the mode type and its amplitude are derived and then the effect of the material inhomogeneity on buckling modes are evaluated qualitatively.  相似文献   

8.
Free transverse vibration and buckling of a double-beam continuously joined by a Winkler elastic layer under compressive axial loading with the influence of rotary inertia and shear are considered in this paper. The motion of the system is described by a homogeneous set of two partial differential equations, which is solved by using the classical Bernoulli?CFourier method. The boundary value and initial value problems are solved. The natural frequencies and associated amplitude ratios of an elastically connected double-beam complex system and the analytical solution of the critical buckling load are determined. The presented theoretical analysis is illustrated by a numerical example, in which the effect of physical parameters characterizing the vibrating system on the natural frequency, the associated amplitude ratios and the critical buckling load are discussed.  相似文献   

9.
As a first endeavor, the buckling analysis of functionally graded (FG) arbitrary straight-sided quadrilateral plates rested on two-parameter elastic foundation under in-plane loads is presented. The formulation is based on the first order shear deformation theory (FSDT). The material properties are assumed to be graded in the thickness direction. The solution procedure is composed of transforming the governing equations from physical domain to computational domain and then discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. After studying the convergence of the method, its accuracy is demonstrated by comparing the obtained solutions with the existing results in literature for isotropic skew and FG rectangular plates. Then, the effects of thickness-to-length ratio, elastic foundation parameters, volume fraction index, geometrical shape and the boundary conditions on the critical buckling load parameter of the FG plates are studied.  相似文献   

10.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

11.
Out-of-plane buckling of anisotropic elastic plate subjected to a simple shear is investigated. From exact 3-D equilibrium conditions of anisotropic elastic body with a plane of elastic symmetry at critical configuration, the eqution for buckling direction (buckling wave direction) parameter is derived and the shape functions of possible buckling modes are obtained. The traction free boundary conditions which must hold on the upper and lower surfaces of plate lead to a linear eigenvalue problem whose nontrivial solutions are just the possible buckling modes for the plate. The buckling conditions for both flexural and barreling modes are presented. As a particular example of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate, which is subjected to simple shear along a direction making an arbitrary angle of θ with respect to an elastic principal axis of materials, is analyzed. The buckling direction varies with θ and the critical amount of shear. The numerical results show that only the flexural mode can indeed exist. Project supported by the National Natural Science Foundation of China (No. 19772032).  相似文献   

12.
The elastic buckling analysis and the static postbuckling response of the Euler–Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.  相似文献   

13.
The dynamic modelling of a simply-supported thin laminated plate subject to in-plane excitation is established based on the classic shear theory and von Kármán nonlinear theory. The method of multiple scales is used to determine an approximate solution for the system. According to solvability conditions, the nonlinear modulation equations arising from the principal parametric resonances are obtained and two possible nontrivial solutions are performed. To analyze the nonlinear dynamic response of the plate embedded with auxetic layers, 5-layered sandwich plate, in which two auxetic elastic layers are alternatively sandwiched between three positive Poisson’s ratio (PPR) elastic ones, is presented. The natural frequency of model (m, n) shows an increase with respect to the absolute value of Poisson’s ratio. Particularly, the amplitude-frequency responses of the laminated plate subject to principal parametric resonance are analyzed for different values of Poisson’s ratio. Moreover, it can be found that for model (m, n), there must be some certain value or interval of negative Poisson’s ratio (NPR), which, results in zero response effect, in other words, the in-plane excitation will be ineffective for this model when the Poisson’s ratio just lies at such a value or interval. Furthermore, it can also be observed that the certain interval of Poisson’s ratio becomes wider with the increase of damping.  相似文献   

14.
The critical buckling loads of pinned-pinned and cantilever beams are computed using the equations of three-dimensional elasticity rather than typical beam theories. These loads are influenced both by the nature of the assumed displacement field over the beam cross-section and by the inclusion of the terms from the full constitutive tensor. Of special interest are beams that are either anisotropic or auxetic. For anisotropic beams, an increased ratio of longitudinal to shear modulus for cantilevered beams increases the generation of shear buckling rather than flexural buckling. For isotropic auxetic beams, the values of Poisson ratio that define the limit between buckling loads that approach the classical buckling load from above or below are discussed.  相似文献   

15.
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure.  相似文献   

16.
A theoretical model of an elastic panel in hypersonic flow is derived to be used for design and analysis. The nonlinear von Kármán plate equations are coupled with 1st order Piston Theory and linearized at the nonlinear steady-state deformation due to static pressure differential and thermal loads. Eigenvalue analysis is applied to determine the system’s stability, natural frequencies and mode shapes. Numerically time marching the equations provides transient response prediction which can be used to estimate limit cycle oscillation amplitude, frequency and time to onset. The model’s predictive capability is assessed by comparison to an experiment conducted at a free stream flow of Mach 6. Good agreement is shown between the theoretical and experimental natural frequencies and mode shapes of the fluid–structure system. Stability analysis is performed using linear and nonlinear methods to plot stability, flutter and buckling zones on a free stream static pressure vs temperature differential plane.  相似文献   

17.
The local-buckling-induced elastic interaction between two circular inclusions in a free-standing film is reported using numerical simulation. The simulation relies on a continuum model based on the modified Föppl-von Kármán plate theory for a film with arbitrarily distributed eigenstrain and eigencurvature. It is shown that due to the overlapping of the nonlinear local buckling the elastic interaction between the two inclusions with the same eigencurvature is repulsive, while the interaction between them with the opposite eigencurvature is attractive. The interaction strength in both cases decays with their mutual distance. In addition, the inclusion with positive/negative eigenstrain above critical values can trigger an axisymmetric/non-axisymmetric buckling, respectively, and the buckling induced elastic interaction between the two inclusions with eigenstrain shows a nonmonotonic behavior.  相似文献   

18.
This paper studies axially compressed buckling of an individual multiwall carbon nanotube subjected to an internal or external radial pressure. The emphasis is placed on new physical phenomena due to combined axial stress and radial pressure. According to the radius-to-thickness ratio, multiwall carbon nanotubes discussed here are classified into three types: thin, thick, and (almost) solid. The critical axial stress and the buckling mode are calculated for various radial pressures, with detailed comparison to the classic results of singlelayer elastic shells under combined loadings. It is shown that the buckling mode associated with the minimum axial stress is determined uniquely for multiwall carbon nanotubes under combined axial stress and radial pressure, while it is not unique under pure axial stress. In particular, a thin N-wall nanotube (defined by the radius-to-thickness ratio larger than 5) is shown to be approximately equivalent to a single layer elastic shell whose effective bending stiffness and thickness are N times the effective bending stiffness and thickness of singlewall carbon nanotubes. Based on this result, an approximate method is suggested to substitute a multiwall nanotube of many layers by a multilayer elastic shell of fewer layers with acceptable relative errors. Especially, the present results show that the predicted increase of the critical axial stress due to an internal radial pressure appears to be in qualitative agreement with some known results for filled singlewall carbon nanotubes obtained by molecular dynamics simulations.  相似文献   

19.
This paper provides an analytical solution for the critical buckling stress of adhesively bonded aluminum hat sections under static axial compression. The governing rectangular plate member of the structure is treated based on the differential equation for out-of-plane deflections of thin plates. Finite element eigenvalue buckling analysis is performed to verify the assumed simply supported boundary conditions for common edges between adjacent plate elements. Elastic restraint is applied to the two loaded edges of the rectangular plate, and the relative critical buckling stress is computed according to the transcendental equations. It is found from experiments that there is no adhesive bonding failure in the elastic buckling stage. The analytical solution yields buckling stress predictions which are in reasonable agreement with measured values.  相似文献   

20.
This paper deals with the buckling behavior of two-layer shear-deformable beams with partial interaction. The Timoshenko kinematic hypotheses are considered for both layers and the shear connection (no uplift is permitted) is represented by a continuous relationship between the interface shear flow and the corresponding slip. A set of differential equations is obtained from a general 3D bifurcation analysis, using the above assumptions. Original closed-form analytical solutions of the buckling load and mode of the composite beam under axial compression are derived for various boundary conditions. The new expressions of the critical loads are shown to be consistent with the ones corresponding to the Euler–Bernoulli beam theory, when transverse shear stiffnesses go to infinity. The proposed analytical formulae are validated using 2D finite element computations. Parametric analyses are performed, especially including the limiting cases of perfect bond and no bond. The effect of shear flexibility is particularly emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号