首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We prove that an abelian group G is a countable direct sum of finite cyclic groups if and only if there exists a consistent existential theory Γ of abelian groups such that G is embeddable in every model of Γ.  相似文献   

2.
The duality principle for Gabor frames states that a Gabor sequence obtained by a time-frequency lattice is a frame for L2(Rd) if and only if the associated adjoint Gabor sequence is a Riesz sequence. We prove that this duality principle extends to any dual pairs of projective unitary representations of countable groups. We examine the existence problem of dual pairs and establish some connection with classification problems for II1 factors. While in general such a pair may not exist for some groups, we show that such a dual pair always exists for every subrepresentation of the left regular unitary representation when G is an abelian infinite countable group or an amenable ICC group. For free groups with finitely many generators, the existence problem of such a dual pair is equivalent to the well-known problem about the classification of free group von Neumann algebras.  相似文献   

3.
Let G be a commutative algebraic group over a finitely generated infinite field K of characteristic p. We prove that every extension of K contained in the field obtained by adjoining to K all prime-to-p torsion points of G is Hilbertian. We also determine when the field obtained by adjoining to K all torsion points of G has this property. This extends results of Moshe Jarden on abelian varieties.  相似文献   

4.
Let G be a transitive permutation group in which all derangements are involutions. We prove that G is either an elementary abelian 2-group or is a Frobenius group having an elementary abelian 2-group as kernel. We also consider the analogous problem for abstract groups, and we classify groups G with a proper subgroup H such that every element of G not conjugate to an element of H is an involution.  相似文献   

5.
We study notions such as finite presentability and coherence, for partially ordered abelian groups and vector spaces. Typical results are the following: (i) A partially ordered abelian group G is finitely presented if and only if G is finitely generated as a group, G+ is well-founded as a partially ordered set, and the set of minimal elements of G+\ {0} is finite. (ii) Torison-free, finitely presented partially ordered abelian groups can be represented as subgroups of some Zn, with a finitely generated submonoid of (Z+)n as positive cone. (iii) Every unperforated, finitely presented partially ordered abelian group is Archimedean. Further, we establish connections with interpolation. In particular, we prove that a divisible dimension group G is a directed union of simplicial subgroups if and only if every finite subset of G is contained into a finitely presented ordered subgroup.  相似文献   

6.
It has been an open question for a long time whether every countable group can be realized as a fundamental group of a compact metric space. Such realizations are not hard to obtain for compact or metric spaces but the combination of both properties turn out to be quite restrictive for the fundamental group. The problem has been studied by many topologists (including Cannon and Conner) but the solution has not been found. In this paper we prove that any countable group can be realized as the fundamental group of a compact subspace of ${\mathbb{R}^4}$ . According to the theorem of Shelah [10] such space can not be locally path connected if the group is not finitely generated. The theorem is proved by an explicit construction of an appropriate space X G for every countable group G.  相似文献   

7.
IfG is a finitely generated group that is abelian or word-hyperbolic andH is an asynchronously combable group then every split extension ofG byH is asynchronously combable. The fundamental group of any compact 3-manifold that satisfies the geometrization conjecture is asynchronously combable. Every split extension of a word-hyperbolic group by an asynchronously automatic group is asynchronously automatic.  相似文献   

8.
We investigate the palindromic width of finitely generated solvable groups. We prove that every finitely generated 3-step solvable group has finite palindromic width. More generally, we show the finiteness of the palindromic width for finitely generated abelian-by-nilpotent-by-nilpotent groups. For arbitrary solvable groups of step ≥3, we prove that if G is a finitely generated solvable group that is an extension of an abelian group by a group satisfying the maximal condition for normal subgroups, then the palindromic width of G is finite. We also prove that the palindromic width of ??? with respect to the set of standard generators is 3.  相似文献   

9.
For a compact Hausdorff abelian group K and its subgroup HK, one defines the g-closuregK(H) of H in K as the subgroup consisting of χK such that χ(an)?0 in T=R/Z for every sequence {an} in (the Pontryagin dual of K) that converges to 0 in the topology that H induces on . We prove that every countable subgroup of a compact Hausdorff group is g-closed, and thus give a positive answer to two problems of Dikranjan, Milan and Tonolo. We also show that every g-closed subgroup of a compact Hausdorff group is realcompact. The techniques developed in the paper are used to construct a close relative of the closure operator g that coincides with the Gδ-closure on compact Hausdorff abelian groups, and thus captures realcompactness and pseudocompactness of subgroups.  相似文献   

10.
We refer to an Alperin group as a group in which the commutant of every 2-generated subgroup is cyclic. Alperin proved that if p is an odd prime then all finite p-groups with the property are metabelian. Nevertheless, finite Alperin 2-groups may fail to be metabelian. We prove that for each finite abelian group H there exists a finite Alperin group G for which G″ is isomorphic to H.  相似文献   

11.
We say that a complex valued function defined on an Abelian group G is a local polynomial, if its restriction to every finitely generated subgroup of G is a polynomial. We prove that local spectral synthesis (that is, spectral synthesis using local polynomials instead of polynomials) holds on every Abelian group having countable torsion free rank. More precisely, there is a cardinal ω 1κ≦2 ω such that local spectral synthesis holds on an Abelian group G if and only if the torsion free rank of G is less than κ.  相似文献   

12.
An algebraic module is a KG-module that satisfies a polynomial with integer coefficients, with addition and multiplication given by direct sum and tensor product. In this article we prove that if G is a group with abelian Sylow 2-subgroups and K is a field of characteristic 2, then every simple KG-module is algebraic.  相似文献   

13.
If G is a countable, discrete group generated by two finite subgroups H and K and P is a II1 factor with an outer G-action, one can construct the group-type subfactor PHP?K introduced by Haagerup and the first author to obtain numerous examples of infinite depth subfactors whose standard invariant has exotic growth properties. We compute the planar algebra of this subfactor and prove that any subfactor with an abstract planar algebra of “group type” arises from such a subfactor. The action of Jones' planar operad is determined explicitly.  相似文献   

14.
15.
We study the first cohomology groups of a countable discrete group G with coefficients in a G-module ?Φ(G), where Φ is an N-function of class Δ2(0) ∩ ?2(0). Developing the ideas of Puls and Martin-Valette for a finitely generated group G, we introduce the discrete Φ-Laplacian and prove a theorem on the decomposition of the space of Φ-Dirichlet finite functions into the direct sum of the spaces of Φ-harmonic functions and ?Φ(G) (with an appropriate factorization). We prove also that if a finitely generated group G has a finitely generated infinite amenable subgroup with infinite centralizer then \(\bar H^1\) (G, ?Φ(G)) = 0. In conclusion, we show the triviality of the first cohomology group for the wreath product of two groups one of which is nonamenable.  相似文献   

16.
A subgroup H of a group G is said to be an SS-quasinormal (Supplement-Sylow-quasinormal) subgroup if there is a subgroup B of G such that HB = G and H permutes with every Sylow subgroup of B. A subgroup H of a group G is said to be S-quasinormally embedded inGif for every Sylow subgroup P of H, there is an S-quasinormal subgroup K in G such that P is also a Sylow subgroup of K. Groups with certain SS-quasinormal or S-quasinormally embedded subgroups of prime power order are studied.  相似文献   

17.
The title result is proved by a Murskii-type embedding.Results on some related questions are also obtained. For instance, it is shown that every finitely generated semigroup satisfying an identity ξd=ξ2d is embeddable in a relatively free semigroup satisfying such an identity, generally with a larger d; but that an uncountable semigroup may satisfy such an identity without being embeddable in any relatively free semigroup.It follows from known results that every finite group is embeddable in a finite relatively free group. It is deduced from this and the proof of the title result that a finite monoid S is embeddable by a monoid homomorphism in a finite (or arbitrary) relatively free monoid if and only if its group of invertible elements is either {e} or all of S.  相似文献   

18.
A group G is called a CI-group provided that the existence of some automorphism σ ∈ Aut(G) such that σ(A) = B follows from an isomorphism Cay(G, A) ? = Cay (G, B) between Cayley graphs, where A and B are two systems of generators for G. We prove that every finitely generated abelian group is a CI-group.  相似文献   

19.
Let G be a 2-edge-connected simple graph on n ≥ 14 vertices, and let A be an abelian group with the identity element 0. If a graph G* is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say that G can be A-reduced to G*. In this paper, we prove that if for every ${uv\not\in E(G), |N(u) \cup N(v)| \geq \lceil \frac{2n}{3} \rceil}$ , then G is not Z 3-connected if and only if G can be Z 3-reduced to one of ${\{C_3,K_4,K_4^-, L\}}$ , where L is obtained from K 4 by adding a new vertex which is joined to two vertices of K 4.  相似文献   

20.
We study the compact-open topology on the character group of dense subgroups of topological abelian groups. Permanence properties concerning open subgroups, quotients and products are considered. We also present some representative examples. We prove that every compact abelian group G with w(G)?c has a dense pseudocompact group which does not determine G; this provides (under CH) a negative answer to a question posed by S. Hernández, S. Macario and the third listed author two years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号