首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

2.
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T)  S(0)}/R for stoichiometric compositions of alkali disilicate (M2O · 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.  相似文献   

3.
A new differential flow heat capacity calorimeter was constructed. It is designed to operate at temperatures up to 700 K and pressures up to 35 MPa and its primary use is for determining the massic heat capacities at constant pressure of dilute aqueous solutions. The instrument works in the so-called isoperibol regime, where the fluid sample flowing through the cell is heated by an electrical heater and the power necessary to provide a constant temperature rise is measured relative to that for a reference fluid (water). From the two values of power for sample and water the ratio of massic heat capacities of the sample to that of water can be calculated. A thorough investigation of calibration techniques showed that the calorimetric performance is very sensitive to the thermal conductivities of the sample and reference fluids. Measurements under turbulent flow conditions are questionable since there is no guarantee that by changing the flow rate the experiments and the calibrations would be performed at the same flow conditions. The procedure is very accurate and sensitive when measuring the difference in heat capacity between a solvent and a dilute solution of solute in the same solvent. The calorimeter was used to measure heat capacities of aqueous solutions of NaCl at eight temperatures up to 623 K and pressures to 30 MPa. The newly obtained values show consistency with previously published results and enlarge the database of experimental values aboveT =  573 K, where experimental data are rare.  相似文献   

4.
Calorimetric measurements have been performed to determine the heat of dissolution of polyhalite K2SO4 · MgSO4 · 2CaSO4 · 2H2O and its analogues K2SO4 · MSO4 · 2CaSO4 · 2H2O (M = Mn, Co, Ni, Cu, and Zn) at T = 298.15 K. The dissolution experiments were carried out in NaClO4 solution with varying concentrations (0.5 to 2.0) mol kg?1. All polyhalites dissolve exothermically. Exothermicity increases with concentration of NaClO4. An extrapolation to infinite dilution was done using the SIT model.Within the limits of experimental uncertainty, the enthalpies of dissolution for the triple salts K2MgCa2(SO4)4 · 2H2O with M = Mg, Mn, Ni, and Zn coincide. The value for the cobalt salt is noticeably less exothermic. Dissolution enthalpy of leightonite K2CuCa2(SO4)4 · 2H2O, which does not crystallize in the polyhalite structure, deviates considerably within the series.  相似文献   

5.
Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm?3, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager–Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D11, D22, D12, and D21) for aqueous solutions containing NiCl2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl2 in different media.  相似文献   

6.
7.
8.
Experimental values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K while the speed of sound at T = 298.15 K in the binary mixtures of methylcyclohexane with n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, and iso-octane are presented over the entire mole fraction range of the binary mixtures. Using these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility are calculated. All the computed quantities are fitted to Redlich and Kister equation to derive the coefficients and estimate the standard error values. Such a study on model calculations in addition to presentation of experimental data on binary mixtures are useful to understand the mixing behaviour of liquids in terms of molecular interactions and orientational order–disorder effects.  相似文献   

9.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

10.
11.
12.
(Liquid + liquid) equilibrium (LLE) data for {water + acrylic acid + (1-butanol, or 2-butanol, or 1-pentanol)} at T = 293.2 K, T = 303.2 K, and T = 313.2 K and atmospheric pressure (≈95 kPa) were determined by Karl Fischer titration and densimetry. All systems present type I binodal curves. The size of immiscibility region changes little with an increase in temperature, but increases according to the solvent, following the order: 2-butanol < 1-butanol < 1-pentanol. Values of solute distribution and solvent selectivities show that 1-pentanol is a better solvent than 1-butanol or 2-butanol for acrylic acid removal from water solutions. Quality of data was ascertain by Hand and Othmer-Tobias equations, giving R2 > 0.916, mass balance and accordance between tie lines and cloud points. The NRTL model was used to correlate experimental data, by estimating new energy parameters, with root mean square deviations below 0.0053 for all systems.  相似文献   

13.
Density data for dilute aqueous solutions of 1,2-ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol (glycerol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298.15 K up to T = 573.15 K and at pressure close to the saturated vapour pressure of water, at pressures close to p = 20 MPa and p = 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

14.
15.
Taylor dispersion technique was used for measuring mutual diffusion coefficients of sodium alginate aqueous solutions at T = 298.15 K, by using as carrier stream solution both pure water and solutions of this polyelectrolyte at a slightly different concentration. The limiting values found at infinitesimal ionic strength, D0, were determined by extrapolating to c  0. These studies were complemented by molecular mechanics calculations. From the experimental data, it was possible to estimate both the limiting conductivity and the tracer diffusion coefficient values for the alginate anion, and the hydrodynamic radius of the sodium alginate (NaC6H7O6), as well as to discuss the influence of the kinetic, thermodynamic and viscosity factors on the diffusion of sodium alginate in aqueous solutions at finite concentrations. Thus, the aim of our innovative research is to contribute to a better understanding of the structure and the thermodynamic behavior of these polymeric systems in solution and supplying the scientific and technological communities with data on these important parameters in solution transport processes.  相似文献   

16.
17.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

18.
Squalane is being recommended as a secondary reference material for viscometry at moderate to high pressure and at moderate viscosity. As part of this work, a correlation has been developed for atmospheric pressure (Comuñas et al., 2013) [12]. Here we report new experimental high pressure viscosities for squalane (176 data points obtained for temperatures (293.15 to 363.15) K, at pressures up to 350 MPa with a maximum viscosity of 745 mPa · s). These have been determined with four different falling-body viscometers as well as a quartz crystal resonator viscometer. A preliminary high pressure viscosity correlation for squalane is proposed, based on our new data. At pressures up to 350 MPa, this correlation provides an absolute average deviation of 1.5% with a maximum absolute deviation of 8.9%. Comparison is made between the different instruments. In addition, we have also considered the validity of a thermodynamic scaling model.  相似文献   

19.
Twenty-eight measurements of the vapour pressure for isobutane have been obtained by means of a metal-bellows variable volumometer at temperatures from 310 K to 407 K. The volume-fraction purity of isobutane used through the measurement was 0.9999. The expanded uncertainties (k = 2) in temperature and pressure measurements have been estimated to be less than ±4 mK and ±1.1 kPa, respectively. The agreement of the present measurements on various volumes of the bellows at the same temperature is almost within the absolute average deviations of ±0.2 kPa. The discrepancies between two series of the present measurement, in which the sample fillings and adopted platinum resistance thermometers are different, have also been confirmed as enough lower than the experimental uncertainty. Throughout the present study, the direct comparisons of the vapour-pressure measurements on the same temperatures with several points data from the literatures were made in order to assess the reliability of the present ones quantitatively. In addition, based on the present measurements as input data, the Wagner-type vapour-pressure correlation was provided, which was also used for the systematic comparisons between the present measurement and the literature data.  相似文献   

20.
Excess enthalpies for binary mixtures (S-fenchone + ethanol/benzene/cyclohexane/carbon tetrachloride) were measured over the whole concentration at T = 298.15 K. The experimental results were compared with the values obtained from the UNIFAC, COSMO-RS and regular solution theory. Excess enthalpies of binary mixtures of R-fenchone and S-fenchone in ethanol, benzene, and cyclohexane solution at different specified mole fractions of fenchone have been measured under the same conditions. With the decreasing of the specified mole fraction of fenchone in different solutions, the excess enthalpies of mixing of chiral orientated solutions increased and became close to zero. Results were compared with those of chiral limonene in ethanol solution. Pair interaction energies were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号