首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

2.
Density, ρ, speed of sound, u, and refractive index, nD, at 298.15 K and atmospheric pressure have been measured over the entire composition range for (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) systems. Excess molar volumes, VE, isentropic compressibility, κs, isentropic compressibility deviations, Δκs, and changes of refractive index on mixing, ΔnD, for the above systems, have been calculated from experimental data and fitted to Cibulka, Singh et al., and Nagata and Sakura equations, standard deviations from the regression lines are shown. Geometrical solution models, Tsao and Smith, Kholer, Jacob and Fitzner, Rastogi et al. were also applied to predict ternary properties from binary contributions.  相似文献   

3.
《Fluid Phase Equilibria》2006,244(1):62-67
Excess molar enthalpies for the ternary system 1,4-dioxane (1) + n-octane (2) + cyclohexane (3) and for the three constituent binary systems have been measured by a Calvet microcalorimeter at 303.15 K and ambient pressure. The experimental binary results were fitted by the Redlich–Kister equation. The excess molar enthalpies of the ternary system were correlated using the Cibulka equation. The DISQUAC group contribution model was applied to predict the excess molar enthalpy for this mixture.  相似文献   

4.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

5.
The excess molar volumes VmE at T=298.15 have been determined in the whole composition domain for (2-methoxyethanol + tetrahydrofuran + cyclohexane) and for the parent binary mixtures. Data on VmE are also reported for (2-ethoxyethanol + cyclohexane). All binaries showed positive VmE values, small for (methoxyethanol + tetrahydrofuran) and large for the other ones. The ternary VmE surface is always positive and exhibits a smooth trend with a maximum corresponding to the binary (2-methoxyethanol + cyclohexane). The capabilities of various models of either predicting or reproducing the ternary data have been compared. The behaviour of VmE and of the excess apparent molar volume of the components is discussed in both binary and ternary mixtures. The results suggest that hydrogen bonding decreases with alcohol dilution and increases with the tetrahydrofuran content in the ternary solutions.  相似文献   

6.
Values of the density and speed of sound were measured for the ternary system (methyl tert-butyl ether + methylbenzene + butan-1-ol) within the temperature range (298.15 to 328.15) K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. Two binary sub-systems were studied and published previously while the binary sub-system (methyl tert-butyl ether + butan-1-ol) is a new study in this work. Excess molar volume, adiabatic compressibility, and isobaric thermal expansivity were calculated from the experimental values of density and speed of sound. The excess quantities were correlated using the Redlich–Kister equation. The experimental excess molar volumes were analyzed by means of both the Extended Real Associated Solution (ERAS) model and the Peng–Robinson equation of state. The novelty of this work is the qualitative prediction of ternary excess molar volumes for the system containing auto-associative compound and two compounds that can hetero-associate. The combination of the ERAS model and Peng–Robinson equation of state could help to qualitatively estimate the real behavior of the studied systems because the experimental results lie between these two predictions.  相似文献   

7.
Experimental values of density, refractive index and speed of sound of (hexane  +  cyclohexane  +  1-butanol) were measured at T =  298.15 K and atmospheric pressure. From the experimental data, the corresponding derived properties (excess molar volumes, changes of refractive index on mixing and changes of isentropic compressibility) were computed. Such derived values were correlated using several polynomial equations. Several empirical methods were used in the calculation of the properties of ternary systems from binary data. The Nitta–Chao group contribution model was applied to predict excess molar volume for this mixture.  相似文献   

8.
New experimental excess molar enthalpy data of the ternary systems (dibutyl ether + 1-propanol + benzene, or toluene), and the corresponding binary systems at T = (298.15 and 313.15) K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and ternary systems show endothermic character at both temperatures. The experimental data for the systems have been fitted using the Redlich–Kister rational equation. Considerations with respect the intermolecular interactions amongst ether, alcohol and hydrocarbon compounds are presented.  相似文献   

9.
(Vapour + liquid) equilibria data of (di-isopropyl ether + 1-butanol + benzene), (di-isopropyl ether + 1-butanol) and (1-butanol + benzene) have been measured at T = 313.15 K using an isothermal total pressure cell. Data reduction by Barker’s method provides correlations for the excess molar Gibbs energy using the Margules equation for the binary systems and the Wohl expansion for the ternary. The Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems reported here.  相似文献   

10.
The experimental equilibrium tie-lines of two quaternary mixtures for (methanol + 1,1-dimethylpropyl methyl ether + toluene + 2,2,4-trimethylpentane) and (methanol + 1,1-dimethylethyl methyl ether + toluene + 2,2,4-trimethylpentane) were measured at the temperature 298.15 K and ambient pressure. The quaternary experimental results and their constituent ternaries have been satisfactorily predicted using binary parameters alone obtained by an associated-solution model that takes into account association of methanol molecules and solvation between (methanol + polar molecules) with allowance for a non-polar interaction given by an extended form of the UNIQUAC model. The results are further compared with those correlated by modified and extended forms of the UNIQUAC models that include multi-body interaction parameters in addition to binary ones.  相似文献   

11.
The aim of this paper is to report experimental densities, excess molar enthalpies and refractive indexes of the ternary system (propyl propanoate + hexane + toluene) and of the corresponding binary mixtures (propyl propanoate + toluene) and (hexane + toluene) at the temperature 298.15 K and atmospheric pressure, over the whole composition range. Also, the excess molar volumes and the changes in the refractive index on mixing have been calculated from the measured data for all mixtures.  相似文献   

12.
This work presents the measurements of the density, speed of sound, refractive index and enthalpy of binary mixtures containing {1,8-cineole + 1-alkanol (ethanol, 1-propanol, 1-butanol, and 1-pentanol)} at two temperatures (298.15 and 313.15) K and atmospheric pressure. The determination of excess molar volume, speed of sound deviation, refractive index deviation, molar refraction, molar refraction deviation, excess isentropic compressibility, and excess molar enthalpy are also given. Redlich–Kister equation was used to fit these derivate properties. The experimental data of the constituent binaries were analysed to discuss the nature and strengths of intermolecular interactions. Eventually some models, SAFT and PC-SAFT for density, Free Length and Collision Factor for speed of sound, Gladstone-Dale Arago-Biot for refractive index, and UNIFAC for excess molar enthalpy, among others, were successfully applied.  相似文献   

13.
《Fluid Phase Equilibria》2005,238(1):65-71
Consistent vapor–liquid equilibrium (VLE) data at 101.3 kPa have been determined for the ternary system isobutyl alcohol (IBA) + isobutyl acetate (IBAc) + butyl propionate (BUP) and two constituent binary systems: IBA + BUP and IBAc + BUP. The IBA + BUP system show lightly positive deviation from Raoult's law and IBAc + BUP system exhibits no deviation from ideal behaviour. The activity coefficients of the solutions were correlated with its composition by the Wilson, NRTL, UNIQUAC models. The ternary system is very well predicted from binary interaction parameters. BUP eliminates the IBA–IBAc binary azeotrope. The change of phase equilibria behaviour is significant therefore this solvent seems to be an effective agent for that azeotrope mixture separation. In fact, the mean relative volatility on a solvent free basis is 1.8.The binary VLE data measured in the present study passed the thermodynamic consistency test of Fredenslund et al. [A. Fredenslund, J. Gmehling, P. Rasmussen, Vapor–Liquid Equilibria Using UNIFAC, A Group Contribution Method, Elsevier, Amsterdam, 1977], and were correlated by the Wilson, NRTL and UNIQUAC models to relate activity coefficients with mole fractions. The VLE data obtained for the ternary system passed both the Wisniak LW [J. Wisniak, Ind. Eng. Chem. Res. 32 (1993) 1531–1533] and McDermott–Ellis [C. McDermott, S.R. Ellis, Chem. Eng. Sci. 20 (1965) 293–296] consistency test. The parameters obtained from binary data were utilized directly to predict the phase behaviour of the ternary system. The results showed an excellent agreement with experimental values.  相似文献   

14.
(Liquid + liquid) equilibrium (LLE) data for ternary systems: (heptane + benzene + N-formylmorpholine), (heptane + toluene + N-formylmorpholine), and (heptane + xylene + N-formylmorpholine) have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and the non-random two liquids equation (NRTL) were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

15.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + ethanol + water), and for binary constituent (N,N-dimethylacetamide + ethanol). The present results are also compared with previously obtained data for (amide + ethanol) binary mixtures, where amide = N-methylformamide, N,N-dimethylformamide, N-methylacetamide, 2-pyrrolidinone, and N-methylpyrrolidinone. We found that excess Gibbs free energy of mixing for binary (amide + ethanol) mixtures varies roughly linearly with the molar volume of amide.  相似文献   

16.
《Fluid Phase Equilibria》2006,239(2):178-182
Isothermal vapour–liquid equilibrium data have been measured for the ternary system (di-isopropyl ether + isobutanol + benzene) and two of the binary systems involved (di-isopropyl ether + isobutanol) and (isobutanol + benzene) at 313.15 K. A static technique consisting of an isothermal total pressure cell was used for the measurements. Data reduction by Barker's method provides correlations for GE using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems.  相似文献   

17.
(Liquid + liquid) equilibrium (LLE) data for the ternary systems (heptane + toluene + 1-ethyl-3-methylpyridinium ethylsulfate) and (heptane  + benzene + 1-ethyl-3-methylpyridinium ethylsulfate) were measured at T = 298.15 K and atmospheric pressure. The selectivity and aromatic distribution coefficients, calculated from the equilibrium data, were used to determine if this ionic liquid can be used as a potential extracting solvent for the separation of aromatic compounds from heptane. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations.  相似文献   

18.
The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR–WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR–WS presented the best performance.  相似文献   

19.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

20.
Isobaric (vapour + liquid) equilibrium data have been measured for the (toluene + sulfolane), (ethylbenzene + sulfolane), and (isopropylbenzene + sulfolane) binary systems with a modified Rose-Williams still at 101.33 kPa. The experimental data of binary systems were well correlated by the non-random two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models for the liquid phase. All the experimental results passed the thermodynamic consistency test by the Herington method. Furthermore, the model UNIFAC (Do) group contribution method was used. Sulfolane is treated as a group (TMS), the new group interaction parameters for CH2–TMS, ACH–TMS and ACCH2–TMS were regressed from the VLE data of (toluene + sulfolane) and (ethylbenzene + sulfolane) binary systems. Then these group interaction parameters were used to estimate phase equilibrium data of the (isopropylbenzene + sulfolane) binary system. The results showed that the estimated data were in good agreement with the experimental values. The maximum and average absolute deviations of the temperature were 4.50 K and 2.39 K, respectively. The maximum and average absolute deviations for the vapour phase compositions of isopropylbenzene were 0.0237 and 0.0137, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号