首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calcium titanofluoride CaTiF5(s) was prepared by solid-state reaction of CaF2(s) with TiF3(s) and characterized by X-ray diffraction method. The standard molar isobaric heat capacity (Cp,m) of CaTiF5(s) was determined by a power compensated differential scanning calorimeter in the temperature from 230 K to 710 K. A solid-state galvanic cell with CaF2 as electrolyte was used to determine the standard molar Gibbs energy of formation (ΔfGm) of CaTiF5 in the temperature range from 803 K to 1005 K. The galvanic cell can be depicted as:(-)Pt,O2(g,101.325kPa)/{CaO(s)+CaF2(s)}//CaF2//{CaTiF5(s)+CaTiO3(s)}/O2(g,101.325kPa),Pt(+)The second law analysis of present data were carried out to derive the standard entropy Sm(298.15K) and the enthalpy of formation ΔfHm(298.15K) and the values derived are 68.7 J · K−1 · mol−1 and −2848.4 kJ · mol−1, respectively.  相似文献   

2.
3.
The equilibrium constants K for the ketoreductase-catalyzed reduction reactions (2-substituted cyclohexanone + 2-propanol = cis- and trans-2-substituted cyclohexanol + acetone) have been measured in n-hexane as solvent. The 2-substituted cyclohexanones included in this study are: 2-methylcyclohexanone, 2-phenylcyclohexanone, and 2-benzylcyclohexanone. The equilibrium constants K for the reactions with 2-methylcyclohexanone were measured over the range T = 288.15 to 308.05 K. The thermodynamic quantities at T = 298.15 K are: K = (2.13 ± 0.06); ΔrGm=-(1.87±0.06)kJ·mol-1; ΔrHm=-(6.56±2.68)kJ·mol-1; and ΔrSm=-(15.7±9.2)J·K-1·mol-1 for the reaction involving cis-2-methylcyclohexanol, and K = (10.7 ± 0.2); ΔrGm=-(5.87±0.04)kJ·mol-1; ΔrHm=-(2.54±1.8)kJ·mol-1; and ΔrSm=(11.2±6.4)J·K-1·mol-1 for the reaction involving trans-2-methylcyclohexanol. The standard molar Gibbs free energy changes ΔrGm for the reactions (trans-2-substituted cyclohexanol = cis-2-substituted cyclohexanol) in n-hexane have also been calculated and compared with the literature data that pertain to reactions in the gas phase and at higher temperatures. Experiments carried out with a chiral column demonstrated that the enzymatic reduction of 2-phenylcyclohexanone catalyzed by the ketoreductase used in this study is not stereoselective.  相似文献   

4.
5.
6.
7.
8.
9.
10.
In this paper, the first, second and mean (N?O) bond dissociation enthalpies (BDEs) were derived from the standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, ΔfHm°(g), at T = 298.15 K, of 2,2′-dipyridil N-oxide and 2,2′-dipyridil N,N′-dioxide. These values were calculated from experimental thermodynamic parameters, namely from the standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, ΔfHm°(cr), at T = 298.15 K, obtained from the standard molar enthalpies of combustion, ΔcHm°, measured by static bomb combustion calorimetry, and from the standard molar enthalpies of sublimation, at T = 298.15 K, determined from Knudsen mass-loss effusion method.  相似文献   

11.
12.
Density data for dilute aqueous solutions of two amino acids (glycine, l-alanine) obtained using a flow vibrating-tube densimeter are presented together with partial molar volumes at infinite dilution (standard molar volumes, Vm,2°) calculated from the measured data. The experiments were performed at temperatures from (298 up to 443) K at pressures close to the saturation line of water, at pressures in the range from (15 to 17) MPa, and at 30 MPa. Values of an analogue of isothermal compressibility, κT,2°=-(1/Vm,2°)(?Vm,2°/?p)T, are also evaluated. Maxima on the curves Vm,2°(T) and κT,2°(T) are observed and discussed. The new data along with literature values of standard molar volumes and heat capacities are used for generating the recommended parameterization of an equation of state for standard molar thermodynamic properties of the aqueous amino acids.  相似文献   

13.
14.
15.
16.
17.
The speed of sound and density measurements in water, methanol, and benzene solutions for the solutes PEG-400, PEG-1000, and PEG-4000 at T = 298.15 K (0.05 to 0.5 mol · kg−1) are reported. The data obtained are used to calculate thermodynamic parameters such as adiabatic (isentropic) compressibility of solutions (βad), apparent molar volume (ϕV) and apparent molar compressibility (ϕK) for solute molecules in all the solvent media. The limiting partial molar volume (ϕV) and limiting partial molar compressibility (ϕK) of solute molecules are used to estimate volume of transfer and compressibility of transfer for PEG molecules from methanol to aqueous and benzene to aqueous media. The high observed negative (ϕK) values in methanol are interpreted in terms of breakdown of one-dimensional H-bonded structure of methanolic molecules. The (ϕK) values observed in water although negative but of small magnitude as compared to salts in water. Attempt is made to estimate hydration number for these molecules in aqueous solutions by applying Shiio’s method and it is observed that PEG-4000 is hydrated most. These results are discussed in terms of solute–solvent and hydrophobic interactions and effects due to conformational characteristic of high molecular weight glycol molecules.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号