首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.K. Hung  N.T.T. Ha  N.V. Hong 《Journal of Non》2012,358(14):1649-1655
We perform a molecular dynamic simulation to study the diffusion mechanism in silica liquid under pressure up to 25 GPa and at temperature of 3000 K. We find that total O―Si―O angle distribution can be expressed by a simple relation between partial O―Si―O angle distribution and fractions of units SiOx. Specifically, we demonstrate that these liquids consist of identical units SiO4, SiO5 and SiO6 and have common partial O―Si―O angle distribution. We also show that each particle undergoes a series of stages where the particle locates in unchanged unit SiOx, x = 3, 4, … 7 or OSiy, y = 1, 2, 3, 4. The diffusivity strongly depends on the rate of transitions Siξ  Siξ ± 1 and Oζ  Oζ ± 1 which is significantly different between low- and high-pressure samples. For low-pressure sample the transitions Si4  Si5, Si5  Si4, O2  O3 and O3  O2 are dominant, meanwhile for high-pressure sample there are transitions Siξ  Siξ ± 1 with ξ = 4, 5, 6 and Oζ  Oζ ± 1 with ζ = 2, 3, 4. This finding may be common for diffusion in all network-forming liquids. The simulation also reveals the spatially heterogeneous dynamics in low-pressure liquid where a large cluster of immobile particle exists for the time that a number of particles move over several inter-particle distances.  相似文献   

2.
We have studied the in-situ boron doping of high Ge content Si1?xGex layers (x=0.3, 0.4 and 0.5). These layers have been grown at low pressure (20 Torr) and low temperature (600–650 °C) with a heavily chlorinated chemistry on blanket Si(0 0 1) substrates. Such a chemistry yields a full selectivity versus SiO2 (isolation) and Si3N4 (sidewall spacers) on patterned wafers with gate stacks. We have quantified the impact of the diborane flow on the SiGe layer crystalline quality, its resistivity, the SiGe:B growth rate and the apparent Ge concentration. Resistivity values lower than 1  cm are easily achieved, all the more so for high Ge content layers. The SiGe growth rate increases and the apparent Ge concentration (from X-ray diffraction) decreases as the diborane flow increases. B atoms (much smaller than Si or Ge) indeed partially compensate the compressive strain in the SiGe:B layers. We have also probed the in-situ boron and phosphorus doping of Si at 750 °C, 20 Torr with a heavily chlorinated chemistry. The B ions concentration increases linearly with the diborane flow, then saturates at a value close to 4×1019 cm?3. By contrast, the P ions concentration increases sub-linearly with the phosphine flow, with a maximum value close to 9×1018 cm?3. Adding diborane (phosphine) to the gaseous mixture leads to a sharp increase (decrease) of the Si:B (the Si:P) growth rates, which has to be taken into account in device layers. All the know-how acquired will be most handy for the formation of in-situ doped recessed or raised sources and drains in metal-oxide semiconductor devices.  相似文献   

3.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0  x  15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions.  相似文献   

4.
《Journal of Non》2007,353(24-25):2459-2468
This paper deals with a systematic study of crystal nucleation and growth kinetics in a 14.6Na2O–34.0CaO–51.4SiO2 mol% glass, which is close to the CaO · SiO2–Na2O · SiO2 pseudo-binary section, just left of the stoichiometric Na2O · 2CaO · 3SiO2 (N1C2S3) compound. We show that crystallization begins with nucleation of a Na4+2xCa4−x[Si6O18] (0 < x < 1) solid solution that is enriched in sodium as compared with both parent glass and the N1C2S3 compound; while a fully crystallized sample is composed only by a solid solution that is stable at very high temperatures, but is metastable in the temperatures under investigation. We thus confirm a continuous compositional change of the crystals during the course of crystallization.  相似文献   

5.
《Journal of Non》2007,353(18-21):1941-1945
The effect of uranium oxide on the structure of sodium borosilicate host glasses has been studied by neutron diffraction. The samples were prepared by quenching the melted mixtures of composition 70 wt% [(65  x)SiO2 · xB2O3 · 25Na2O · 5BaO · 5ZrO2] + 30 wt% UO3 with x = 5, 10 and 15 mol%. It was found, that the U-loaded glasses posses good glass and hydrolytic stability. An enhanced probability for inter-mediate atomic correlations at around 4.8 Å has been established. The RMC simulation of the neutron diffraction data is consistent with a model where the uranium ions are incorporated into interstitial voids in the essentially unmodified network structure of the starting host glass. The U–O atomic pair correlation functions show a sharp peak at around 1.7 Å, and several farther distinct peaks are at 2.8, 3.6 and 4.1 Å. The uranium ions are coordinated by six oxygen atoms in the 1.6–3.4 Å interval.  相似文献   

6.
《Journal of Non》2007,353(44-46):4084-4092
The effect of Sr modifier atoms on the structure of stannosilicate glasses of composition (Sr0)x(SnO)0.5−x(SiO2)0.5, with 0  x 0.15, has been studied using Mössbauer spectroscopy and neutron and X-ray diffraction. The tin is mostly in the Sn2+ state. The Sr–O bond length undergoes a step decrease from (2.640 ± 0.005) Å to (2.585 ± 0.005) Å as x increases from 0.10 to 0.15, indicating a decrease in co-ordination number from 8 to 7. A Sn–Sn distance of 3.507 ± 0.005 Å is revealed by a first-order difference calculation from the x = 0 sample. This is too short to be consistent with significant edge sharing of [SnO3] trigonal pyramids.  相似文献   

7.
《Journal of Non》2006,352(28-29):2958-2968
The structure of RNa2O · B2O3 · KSiO2 · xP2O5 (0.5 < R < 2; 0.86 < K < 3) borosilicate glasses has been studied by nuclear magnetic resonance (NMR). 31P magic angle spinning (MAS), double quantum-magic angle spinning (DQ-MAS) and 31P–11B transfer of populations under double resonance magic angle spinning (TRAPDOR MAS) NMR were used to determine the phosphate speciation in the glasses and their connectivity with the borosilicate network. The structure of the glass network was characterized with 11B, 29Si and 23Na MAS NMR. Ab initio calculations of the 31P chemical shielding were carried out in order to confirm the connectivity between phosphorus and the structural units of the borosilicate glass network. Na3PO4 (monophosphate), Na4P2O7 (diphosphate) and P–O–B species (mono- and diphosphate groups with borate units as the next nearest neighbors) are found all along the compositional range studied. The proportion of the P–O–B groups increases as the glass optical basicity decreases, while the proportions of mono- and diphosphate species decrease. The change in the glass transition temperature of the phospho-borosilicate glasses with respect to that of the borosilicate ones is discussed in terms of the structural characterization. The formation of phosphate species gives rise to the increase in Tg, which is attributed to the re-polymerization of the silicate network, while the formation of P–O–B bonds weakens the glass network and produces a decrease in the glass transition temperature.  相似文献   

8.
In this study, we have developed and applied deposition phase diagrams in the plane of the bulk layer thickness db and the H2-dilution ratio R = [H2]/[Si2H6] for Si:H materials deposited by 70 MHz VHF PECVD from [H2] + [Si2H6] mixed gases on c-Si/(native-oxide)/n-layer substrates. To establish the phase diagrams, series of Si:H depositions having different R values over the range of 60–150 were measured in real time using a rotating-compensator multichannel ellipsometer. Using phase diagram concepts for guidance, we have fabricated high efficiency single-junction nc-Si:H n–i–p solar cells with ~3 Å/s intrinsic layers using the VHF PECVD process. We have found that the nc-Si:H solar cells with the best performance are obtained by incorporating i-layers deposited in the single-phase nanocrystalline silicon regime near the transition boundary to mixed-phase (a + nc)-Si:H. Applying insights from real time spectroscopic ellipsometry moreover, we have investigated in detail the effects of the phase of the underlying n-layer on the phase evolution of the overdeposited Si:H i-layer and on the overall device performance. With the strategy developed here, a stabilized efficiency of η = 9.46% (Voc = 0.516 V, Jsc = 24.65 mA/cm2, FF = 0.744) has been achieved for nc-Si:H solar cells (0.25 cm2 in active area) fabricated with an i-layer deposition rate of ~2.2 Å/s.  相似文献   

9.
《Journal of Non》2007,353(18-21):2020-2024
Glasses from the xMnO · (100−x)[3B2O3 · 0.9PbO · 0.1Ag2O] system with 0  x  20 mol% have been prepared and studied by means of FT-IR absorption and Raman scattering. We interpreted the spectroscopic data in conjunction with the structural information obtained by X-ray diffraction and scanning electron microscopy (SEM). The X-ray patterns have showed homogenous glasses over the entire compositional range while the SEM pictures have detected metallic silver or Ag2O clusters dispersed in the glass network. Acting as complementary spectroscopic techniques, both types of measurements, FT-IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO3 and BO4 units placed in different structural groups, the BO3 units being dominant. The influence of manganese-ion content (x), on the NBO4/NBO3 ratio evolution was investigated.  相似文献   

10.
《Journal of Non》2007,353(5-7):502-505
X-ray photoelectron spectroscopy (XPS) has been used in the study of sol gel-derived Er3+-activated xHfO2–(100  x)SiO2 (x = 10, 20, 30, 40, 50 mol) planar waveguides. The analysis of Si 2p and O 1s core lines were related to the Hf/Si molar ratio to assess the role of hafnia in modifying the silica network. Increasing the HfO2 content brings about a change of the Si 2p and O 1s binding energy respect to those from pure silica. This trend is explained with a formation of hafnium silicate in the matrix with successive phase separation between HfO2 and SiO2 rich phases. XPS results show that hafnia is well dispersed in the silica matrix for molar concentration below 30%. Formation of pure HfO2 domains was detected at higher hafnia concentrations in agreement with previous spectroscopic analyses.  相似文献   

11.
This work presents a study on the structure, microstructure and properties of 50Li2xB2O3·(50 ? x)P2O5 glasses. The structure has been studied through NMR spectroscopy and the microstructure by TEM. The properties of the glasses are discussed according to their structure and microstructural features. The introduction of boron produces new linkages between phosphate chains through P–O–B bonds, whose amount increases with boron incorporation; at the same time, a depolymerisation of the phosphate chains into Q1-type phosphate units takes place. The introduction of boron produces an increase in Tg together with a decrease in the molar volume. The room temperature electrical conductivity increases with boron content as well. However, B2O3 contents higher than 20 mol% lead to crystallisation of lithium orthophosphate which contributed to hinder ionic conduction of the glasses.  相似文献   

12.
《Journal of Non》2007,353(44-46):4121-4127
The tracer diffusion of hydrogen is studied in precursor derived amorphous Si–C–N and Si–B–C–N ceramics using deuterium as a tracer and secondary ion mass spectrometry (SIMS). Since the amorphous ceramics are separated in carbon rich phases (amorphous carbon and amorphous C(BN)x, respectively) and silicon rich phases (amorphous Si3N4 and amorphous Si3+(1/4)xCxN4−x, respectively) we additionally measured the diffusivities of hydrogen in amorphous carbon, in amorphous SiC and in amorphous C–B–N films. The silicon rich phases are identified as diffusion paths for hydrogen in the precursor derived ceramics. Diffusion of hydrogen in these materials is explained with a trap limited diffusion mechanism with a single trap level. We found activation enthalpies of about 2 eV for the precursor derived ceramics, where the activation enthalpy is the sum of a migration enthalpy and a binding enthalpy. The low values for the pre-exponential factors of less than 10−7 m2/s can be explained with an appropriate expression for the entropy factor.  相似文献   

13.
《Journal of Non》2007,353(18-21):2004-2007
The lithium borosilicate system (Li2O)0.4(B2O)(0.6x)(Si2O4)0.6(1−x) with x = 0, 0.2, 0.3, 0.4, 0.6, and 0.8 was investigated using impedance spectroscopy. Impedance spectra were taken in the frequency range from 50 Hz to 1 MHz and in the temperature range from 100 to 280 °C. The ac- and dc-conductivity, relaxation frequency and activation energy of the dc-conductivity were extracted from the impedance spectra. The dc-conductivity of the investigated glass samples increases almost linearly from silica rich (x = 0) to the boron rich (x = 0.8) samples. Activation energy (Ea) was found to be 0.65 eV for high conducting sample and 0.8 eV for low conducting sample, respectively. The mixed glass-former effect was not observed on the samples studied. The effect of temperature scaling of ac-conductivity was observed, which indicates, that ionic conductivity relaxation mechanism is temperature independent for samples with x = 0, 0.2, 0.3. However, some deviations from scaling were found for the samples with higher x (x = 0.4, 0.6, 0.8).  相似文献   

14.
S. Rada  M. Culea  E. Culea 《Journal of Non》2008,354(52-54):5491-5495
Glasses in the system (1 ? x)TeO2 · xB2O3 glasses (with x = 0.3 and 0.4) have been prepared from melt quenching method. The structural changes were studied by FTIR spectroscopy and DFT calculations. From the analysis of the FTIR spectra it is reasonable to assume that when increasing boron ions content the tetrahedral [BO4] units are gradually replaced by trigonal [BO3] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network, would depolymerize of borate chains and would necessite quite a radical rearrangement of the network formed by the [TeO6] octahedral. This is possible considering that tellurium dioxide brings stoichiometrically two oxygen atoms in [TeO4] and needs an additional oxygen atom for the formation of [TeO6] octahedra. This additional oxygen atom is evidently taken off from the boron co-ordination and thus boron atoms transfer their [BO4] co-ordination into [BO3] co-ordination. We used the FTIR spectroscopic data in order to compute two possible models of the glasses matrix. We propose two possible structural models of building blocks for the formation of continuous random network glasses used by density functional theory (DFT) calculations.  相似文献   

15.
《Journal of Non》2006,352(38-39):4101-4111
The structure of Li2O · 2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 °C, respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si–O–Si bond angle ∼7° lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa new high pressure form of lithium metasilicate crystallizes. This new phase, while having lithium metasilicate crystal symmetry, contains at least four different Si sites. NMR results for 6 GPa indicate the presence of Q4 species with (Q4)Si–O–Si(Q4) bond angles of ∼157°. This is the first reported occurrence of Q4 species with such large bond angles in alumina free alkali silicate glass. No five- or six-coordinated Si are found.  相似文献   

16.
《Journal of Non》2007,353(22-23):2295-2300
(1  x)Li2O–xNa2O–Al2O3–4SiO2 glasses were studied for the progressive percentage substitution of Na2O for Li2O at the constant mole of Al2O3 and SiO2. The crystallization temperature at the exothermic peak increased from 898 to 939 °C when the Na2O content increases from 0 to 0.6 mol. The coefficient of thermal expansion and density of these as-quenched glasses increase from 6.54 × 10−6 °C−1 to 10.1 × 10−6 °C−1 and 2.378 g cm−3 to 2.533 g cm−3 when the Na2O content increases from 0 to 0.4 mol, respectively. The electrical resistivity has a maximum value at Na2O · (Li2O + Na2O)−1 = 0.4. The activation energy of crystallization decreases from 444 to 284 kJ mol−1 when the Na2O content increased from 0 to 0.4 mol. Moreover, the activation energy increases from 284 kJ mol−1 to 446 kJ mol−1 when the Na2O content increased from 0.4 to 0.6 mol. The FT-IR spectra show that the symmetric stretching mode of the SiO4 tetrahedra (1035–1054 cm−1) and AlO4 octahedra (713–763 cm−1) exhibiting that the network structure is built by SiO4 tetrahedra and AlO4.  相似文献   

17.
《Journal of Non》2006,352(32-35):3404-3409
In the present work Fe73−xNbxAl4Si3B20 (x = 5, 10) alloys have been processed by melt-spinning with the aim of studying the crystallization sequence through annealing in suitable temperatures. Melt-spun ribbons were characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) through Cu-Kα (λ = 1.54 Å) and synchrotron radiation (λ = 1.77 Å) and transmission electron microscopy (TEM). Soft magnetic properties were measured through the hysteresis loop tracer. In-situ XRD through synchrotron radiation was very accurate in phase identification. Fe73−xNbxAl4Si3B20 (x = 5, 10) alloys showed the possibility of forming ferromagnetic amorphous alloys composed of commercial Fe-based master alloys with fine nanocrystalline structure and good soft magnetic properties.  相似文献   

18.
A glass of composition (20 ? x)Li2O–xLiCl–65B2O3–10SiO2–5Al2O3 where 0 ? x ? 12.5 wt% is prepared using the normal melt-quenching technique. The optical constants and electrical conductivity and their correlation are investigated, furnished and discussed with the substitution of Li2O for LiCl. The mechanism of the optical absorption and the calculated Urbach energy follow the rule of phonon-assisted transitions. The ionic conduction mechanism is determined by activation energy process. Substitution up to 10 wt% LiCl provides high ionic conductivity (1.9 × 10?2 Ω?1 m?1) due to the high average electronegativity of LiCl which increases the polarizability of lithium ions. The small cation–anion distance approach confirmed the enhancement in ionic conductivity of LiCl containing glass compared to that of Li2O. Due to the large size of Cl? ions, there is an expansion of the lattice which in turn broadens the available path windows. For 12.5 wt% LiCl, anomalous density behavior is observed and a reduction in conductivity is occurred, σ = 5.4 × 10?3 Ω?1 m?1. Owing to the model of bond fluctuation, the reduction is attributed to the increase in the alkali halide concentration which creates bottlenecks that hinder the motion of Li+ ions. The ionic conductivity character is strongly supported by the behavior of the glass ionicity factor, density, molar volume, refractive index, average boron–boron separation, molar refraction, metallization criterion and non-bridging oxygen concentration of the studied glass.  相似文献   

19.
O. Cozar  D.A. Magdas  I. Ardelean 《Journal of Non》2008,354(10-11):1032-1035
The local symmetry and interaction between paramagnetic ions in xMoO3(1 ? x)[2 P2O5PbO] glasses with 0.5 ? x ? 50 mol% are investigated by EPR spectroscopy. For x ? 10 mol% the isolated Mo5+ ions surrounded by five oxygen ligands in a square-pyramidal form (C4v symmetry) prevail. The short range disorder in the environment of Mo5+ ions is not significantly (ΔR/R  2%). At high molybdenum content (x > 20 mol%) the dipole–dipole and superexchange coupled Mo5+ ions appear and their number increases with the MoO3 content. These two aspects are also correlated with the network modifier and former role of molybdenum oxide in function of its concentration. Thus a strong depolymerization of the phosphate structure and the formation of P–O–Mo or Mo–O–Mo bonds in studied glasses appear.  相似文献   

20.
《Journal of Non》2006,352(38-39):4082-4087
Liquids with the base compositions (16  x/2)Na2O · xNaF · 10CaO · 74SiO2 (x = 0, 1, 3, and 4) and (10  x/2) · Na2O · xNaF · 10CaO · yAl2O3 · (80  y)SiO2 (x = 0, 1, 3, 5 and y = 5 and 15) doped with 0.25 mol% Fe2O3 were studied by means of square-wave voltammetry in the temperature range from 1000 to 1500 °C. With increasing temperature, the redox equilibria were shifted to the reduced state. Also while increasing the alumina concentration, the Fe2+/Fe3+-redox equilibrium is shifted to the reduced state. In the soda-lime–silica melt the addition of fluoride shifts the equilibrium to the oxidized state, while in the aluminosilicate melts with 15 mol% Al2O3, the equilibrium is shifted to the reduced state. In the aluminosilicate melts with 5 mol% Al2O3, the equilibrium was not affected by the fluoride concentration. This is explained by the structure of the respective glass compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号