首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the enthalpy of the solute-solvent interaction of erythritol and L-threitol in aqueous solution was determined from the values obtained for the enthalpy of solvation. The values for this property were calculated from those determined for the enthalpies of solution and sublimation. To determine the values of the enthalpy of solute-solvent interaction, the solvation process is considered as taking place in three steps: opening a cavity in the solvent to hold the solute molecule, changing the solute conformation when it passes from the gas phase into solution, and interaction between the solute and the solvent molecules. The cavity enthalpy was calculated by the scaled particle theory and the conformational enthalpy change was estimated from the value of this function in the gas phase and in solution. Both terms were determined by DFT calculations. The solvent effect on the solute conformation in solution was estimated using the CPCM solvation model. The importance of the cavity and conformational terms in the interpretation of the enthalpy of solvation is noted. While the cavity term has been used by some authors, the conformational term is considered for the first time. The structural features in aqueous solution of erythritol and L-threitol are discussed.  相似文献   

2.
A simple method for the calculation of the enthalpy of solvation is presented and demonstrated for 35 n-alkane + n-alkane solutions at 25°C. There is a good agreement between the predicted and experimental values. The calculation was based on the separation of the solvation enthalpy into the cavity formation and solute-solvent interaction contributions. The former term was determined from the activation enthalpy of the solvent viscous flow and solute molar volume while the latter on the basis of the dispersion energy using van der Waals diameters for n-propyl group. The procedure was also successful in prediction of the vaporization enthalpy of C5–C17 n-alkanes.  相似文献   

3.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

4.
The enthalpies of mixing of acetonitrile with formamide,N-methylformamide,N,N-dimethylformamide, and hexamethylphosphoric triamide were measured in the temperature interval from 283.15 to 328.15 K. The enthalpy coefficients of binary and ternary interactions were calculated by the methods of the McMillan-Mayer theory. The contributions to the enthalpy of solution due to the formation of a cavity in the solvent, Δcav H°, and those due to the interaction of the solute with the solvent, Δint H°, were determined. The enthalpies of the specific and non-specific solvation of acetonitrile in the corresponding amides were calculated. Specific interactions were found to contribute the most to the solvation enthalpy of acetonitrile. The obtained values were compared with analogous values for solutions of acetonitrile in water and alcohols. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 289–293, February, 1997.  相似文献   

5.
A simple electrostatic model of solvation is presented which allows the interaction with solvent to be included systematically within semiempirical SCF calculations. Solvent effects are incorporated into the Hamiltonian for a solute molecule through a series of imaginary particles, solvatons, which represent the oriented solvent distribution around the solute.The proposed model is based on an algorithm for approximating the enthalpy of solvation of each atomic center from its charge in the molecular system and the experimental hydration enthalpies of its various ions. The calculated atomic solvation energy of one center is then modified to include the interaction with other charged atomic centers in the molecule. The method, developed here for the MINDO/3 approximation, has been applied to the calculation of the aqueous dissociation of a series of hydrides. In general, it leads to fairly accurate solvation enthalpies andpK a values when applied to systems with fixed molecular geometries. A general discussion of the problems associated with the development of a solvation model within a semiempirical framework is also presented.  相似文献   

6.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

7.
A theorem presented by Professor Ben-Naim (J Phys Chem 82:874–885, 1978) states that the standard state enthalpy and entropy changes arising from changes in the solvent structure that are induced by solvation of a solute cancel exactly in the standard state Gibbs energy. In this paper this is explored by consideration of the thermodynamics of transfer of electrolytes in mixed solvents, using previously developed models of the solvation process. Two cases are considered. One is random solvation, where curvatures in plots of the transfer enthalpies and entropies, which arise from changes in solvent–solvent interactions, exactly compensate in the transfer Gibbs (free) energies, which are sensibly linear with solvent composition. The second type of system are those with strong preferential solvation where it is found that the transfer Gibbs energies can be accounted for quantitatively in terms of changes in the solute–solvent interactions, with no contribution from changes in solvent–solvent interactions. The results are entirely consistent with the Ben-Naim theorem.  相似文献   

8.
Solution enthalpies of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane, TATD, in water were measured as a function of molal concentration at 278.15, 288.15, 298.15, and 308.15 K. Solvation enthalpies and the heat capacity of solution were calculated. The results show a structuring of solvent around the solute and the observed temperature dependency of the enthalpy of solvation permits the classification of TATD as being a “mixed solute”. The Scaled Particle Theory was employed for analyzing the individual contributions to the solvation enthalpy.  相似文献   

9.
Reactions of 2-hydroxy-5-(1-admantyl)benzene-1,3-dicarbaldehyde with ethane-1,2-diamine, transcyclohexane-1,2-diamine, and N-(2-aminoethyl)ethane-1,2-diamine were studied in strongly dilute solution and under conditions of template synthesis in the presence of H3BO3. The effects of reaction conditions and initial diamine structure on the cyclocondensation process were determined. Selective [3 + 3]-cyclocondensation of 2-hydroxy-5-(1-admantyl)benzene-1,3-dicarbaldehyde with trans-cyclohexane-1,2-diamine and [2 + 2]-cyclization with N-(2-aminoethyl)ethane-1,2-diamine were performed in chloroform in the presence of H3BO3. The first representative of adamantylcalixsalens was synthesized.  相似文献   

10.
Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute–solvent or solvent–solvent molecules were characterized in order to find their role on the solvation of these amino acids.  相似文献   

11.
This study provides the first accurate analysis of the energetics of solvation of blood porphyrins in binary solvents which are considered as appropriate models for a smooth transition from a polar protein-like phase to an apolar lipid-like environment. Our results do indicate that hematoporphyrin dimethylether dimethylester (HDEDE) and deuteroporphyrin dimethylether (DDE), as well as the model of their ester side-chains ethyl acetate (EtOAc), reveal more exothermic solvation in chloroform (CHCl3) than in dimethylformamide (DMF) and, especially, in 1-octanol (OctOH). The energetics of pair interaction between dissolved species and cosolvent molecules both in a protein-like and a lipid-like environment are clearly associated with these solvation effects. The interaction between blood porphyrins and DMF in OctOH is accompanied by large negative enthalpy changes at both temperatures, whereas in chloroform, forming strong H-bonds with dissolved species, the interaction is strongly thermochemically repulsive. All solute molecules interact in the energetically unfavorable way with OctOH and CHCl3 in DMF, the effect being much stronger pronounced for chloroform. The most significant result of this work is that it is possible to connect this pair interaction in a highly diluted solution with the solute behavior in the entire range of the binary mixture. The approach proposed is independent of a solute and solvent structure, it provides a good prediction of the energetics of solvation in mixed solvents and can be extended for a lot of other biologically active solutes.  相似文献   

12.
13.
Thermodynamic properties such as enthalpy of solution for thiourea in trigiycol and water were determined. Measurements were made at 293.15 K and molalities of solute for different solvents in the range of m = 0.106 to 0.213 mol kg−1, making use of a precise isoperibol ampoule-type calorimeter. It was concluded that the solvent proton-donor ability and existing steric hindrances for hydrogen bonding and other intermolecular interactions play a key role in the solvation of thiourea.  相似文献   

14.
Enthalpies of dissolution of acetonitrile, propylene carbonate, and 1,4-dioxane in mixtures of water with acetone or DMSO were measured in the whole concentration range of the mixed solvents. Standard enthalpies of dissolution and enthalpies of transfer of solutes from water to its mixtures with acetone or DMSO were determined. In the region of small proportions of the nonaqueous component, the enthalpy of cavity formation in the mixed solvent makes the main contribution to the variation of the enthalpy of dissolution. An increase in the proportion of the nonaqueous component leads to competition between the contributions of cavity formation and specific interaction between the solute and the solvent during solvation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1747–1752, September, 1995.  相似文献   

15.
The preferential solvation of water plays an important role in ferrocene research which is a subject of current interest. Voltammetric investigations were carried out for Au electrode in acetonitrile/water, showing preferential solvation of water. In our work, the preferential solvation of water in acetonitrile/water was studied by electrochemical methods including cyclic volitammetry, electrochemical impedance spectra and double‐step chronoamperometry. Ferrocenemethanol (FcCH2OH) molecules as a solute spontaneously adsorb on the electrode surface in anhydrous acetonitrile, resulting from acetonitrile molecules tend to form an acetonitrile solvent layer on the surface of the electrode and acetonitrile solvent layer has a lower energy barrier than the aqueous solvent layer, which has been obtained by modeling solvation. The solvent strongly influences electrochemical behavior of solute. Once there is an amount of water in acetonitrile solvent, FcCH2OH that adsorbed on the electrode surface desorb. This is because water preferentially solvate with FcCH2OH in term of intermolecular forces between solvent and solute. Moreover, hydrogen bond between water molecules and FcCH2OH molecules is stronger than dipole‐dipole interaction between acetonitrile molecules and FcCH2OH molecules in solvation effect. Through electrochemical behavior of FcCH2OH changing, preferential solvation of water is analyzed by electrochemical methods.  相似文献   

16.
A new chiral separation system effective for the enantioselective extraction of racemic trans-cyclohexane-1,2-diamine is presented. Enantioselective dispersive liquid–liquid microextraction has been used for the chiral microseparation of trans-cyclohexane-1,2-diamine, with a chiral azophenolic crown ether being identified as a versatile chiral selector. The influence of various process conditions on the extraction performance was studied experimentally. It was found that the operational selectivity in one extraction step is mainly related to the type and volume of the solvents, chiral selector concentration, extraction time, temperature of sample solution, and pH. At optimum conditions (300 μL of diethyl ether as the extraction solvent 1 mL of methanol as the disperser solvent, with 5 mmol L?1 chiral selector concentration, pH of the sample equal to 4.5, 30 min extraction time and a temperature of 10 °C), the distribution ratio of (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine was 18.3 and 1.8, respectively, while the enantioselectivity value of 10.2 was found at the optimum condition.  相似文献   

17.
A new solvation model, named shells theory of solvation, is proposed. In this approach, the solvent is divided in two regions, the S1 shell, close to the solute and describing specific solute–solvent interactions, and the S2 shell, representing the remain solvent and accounting for the long-range interaction contribution. A simple theoretical equation can be derived which allows the computation of the solvation free energy using two-point thermodynamic integration and configurations generated from molecular dynamics simulation. The discrete/continuum version of this theory provides rigorous theoretical foundations for the popular long-range Born correction and presents a new reliable expression for including this contribution. Further, it converges to the full discrete representation of the solvent when the number of solvent molecules goes to infinity. The method can be easily applied when the solute–solvent interaction (S1 shell) is treated by full quantum mechanics, while the S2 shell is described by a dielectric continuum solvation method. A simple test of the theory was done for solvation of fluoride ion in benzene solution. The S1 shell was composed of the fluoride ion plus 32 benzene molecules, and the interaction with the S2 shell was calculated at Hartree–Fock level with the MINI basis set and using the polarizable continuum model.  相似文献   

18.
tert-Butyloxycarbonyl (Boc) protected chiral 1,2-diamine monomers 3 were copolymerized with achiral vinyl monomers such as styrene, methacrylates, acrylates, methacrylamide, and acrylamide to give crosslinked polymers P2 containing chiral 1,2-diamine moieties. Deprotection of the Boc groups in the polymer afforded the crosslinked chiral 1,2-diamine polymer P3. The diamine polymer was allowed to react with RuCl2/BINAP in DMF to form polymeric complex. Asymmetric hydrogenation of aromatic ketones smoothly proceeded using the polymeric complex to give the corresponding secondary alcohol in quantitative yield with high level of enantioselectivity up to 98% ee in a mixed solvent of DMF and 2-propanol. The polymeric catalyst can be recycled several times without loss of the activity.  相似文献   

19.
The enthalpies of solution of uracil and its alkylated derivatives in water, methanol, N,N-dimethylformamide (DMF) and water+DMF mixtures were measured at 25°C. The enthalpies of solvation were determined. The enthalpies of cavity formation, corresponding to the enthalpies of solvent-solvent interactions were calculated and the enthalpies of solute-solvent interactions were obtained. The presence of the alkyl groups was found to have different effects on the enthalpy of interaction depending on the position and size of the substitution. The effect of alkylation at the nonpolar side of the uracil ring was found to arise mostly from the enhancement of the van der Waals interactions. The alkyl substitutions at the polar side resulted also in the removal of the solvent molecules interacting specifically with the polar groups of uracil. The enthalpy of those specific interactions was determined and found to be stronger in methanol and DMF than in water. Enthalpies of solvation in the binary water+DMF solvent were found to depend in a nonlinear way on the solvent composition. The nonlinearities in the water-rich region were found to arise from the decay of the hydrophobic hydration of the solutes with the increasing DMF content. The substitution of two methyl groups caused the uracil molecule to bahave as a predominantly hydrophobic solute. The nonlinearities in the DMF-rich region were found only for those solutes which can form hydrogen bonds with DMF.  相似文献   

20.
The solubility behavior of lornoxicam was studied in binary solvent systems. Solutions containing an excess of drug were shaken for 72?h at 25?°C, filtered and analyzed. To understand the solute?Csolvent interactions, ideal, Hildebrand?CScatchard and extended Hildebrand solubility approaches were used. The ideal solubility of lornoxicam was calculated from the enthalpy of fusion. The molar enthalpy of fusion was obtained from DSC studies. The experimental mole fraction solubility deviated from the ideal mole fraction solubility, indicating self-association of solute, or solvent, or both in solution. The solubility behavior failed to satisfy the Hildebrand?CScatchard equations. The solubilities of lornoxicam were back calculated with an interaction energy term ??W?? and a rational activity coefficient term ??(log10 ?? 2)/A??. These parameters were regressed against a polynomial function of ?? 1, the solubility parameter of the solvent mixture. The solubility behavior of lornoxicam obeyed the extended Hildebrand equation. The solubility parameter of lornoxicam ?? 2 was found to be 27 MPa1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号