首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

2.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

3.
《Solid State Sciences》2007,9(6):521-526
Members of the spinel solid solution between Li4/3Ti5/3O4 and LiCrTiO4, i.e., Li(4−x)/3Ti(5−2x)/3CrxO4 (0  x  0.9), have been investigated as possible negative electrodes for future lithium-ion batteries. Electrochemical behaviour have been studied over the potential range 1–3.5 V vs Li+/Li. Results are promising with anodic capacities between 129 and 163 mA h/g with a flat operating voltage at about 1.5 V, which is attributed to the pair Ti4+/Ti3+. The inclusion of Cr3+ in the spinel structure enhances the specific capacity. In-situ X-ray diffraction experiments confirm that the reaction proceeds in a topotactic manner.  相似文献   

4.
The apparent molar heat capacities Cp, φ  and apparent molar volumes Vφ  of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) were measured at T =  298.15 K and p =  0.1 MPa with a Sodev (Picker) flow microcalorimeter and a Sodev vibrating-tube densimeter, respectively. These measurements extend from lower molalities of m =  (0.005 to 0.018) mol ·kg  1to m =  (0.025 to 0.434) mol ·kg  1, where the upper molality limits are slightly below those of the saturated solutions. There are no previously published apparent molar heat capacities for these systems, and only limited apparent molar volume information. Considerable amounts of the R SO4 + (aq) and R(SO4)2  (aq) complexes are present, where R denotes a rare-earth, which complicates the interpretation of these thermodynamic quantities. Values of the ionic molar heat capacities and ionic molar volumes of these complexes at infinite dilution are derived from the experimental information, but the calculations are necessarily quite approximate because of the need to estimate ionic activity coefficients and other thermodynamic quantities. Nevertheless, the derived standard ionic molar properties for the various R SO4 + (aq) and R(SO4)2  (aq) complexes are probably realistic approximations to the actual values. Comparisons indicate that Vφ  {RSO4 + , aq, 298.15K}  =   (6  ±  4)cm3· mol  1and Vφ  {R(SO4)2  , aq, 298.15K}  =  (35  ±  3)cm3· mol  1, with no significant variation with rare-earth. In contrast, values of Cp, φ  { RSO4 + , aq, 298.15K } generally increase with the atomic number of the rare-earth, whereas Cp, φ  { R(SO4)2  , aq, 298.15K } shows a less regular trend, although its values are always positive and tend to be larger for the heavier than for the light rare earths.  相似文献   

5.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

6.
A new molybdenum complex (C4H12N2)2[(MoV2O4)(MoVIO4)(C2O4)2]·2H2O, was solvothermally synthesized and characterized by single-crystal X-ray diffraction. The structure of the compound consists of oxalate acid-coordinated mixed-valent [MoV2O4][MoVIO4] helical chains and protonated piperazine cations. The helical chains are built up from the [MoV2O4] units and [MoVIO4] tetrahedral. The central axis about helical chain is a 2-fold screw axis. The compound crystallizes in the space group P21/n of monoclinic system with a = 11.396(2) Å, b = 14.107(3) Å, c = 15.805(3) Å, β = 102.09(3)°, V = 2484.6(9) Å3, Z = 4. Other characterizations by elemental analysis, IR, and thermal analysis for this compound are also given.  相似文献   

7.
8.
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid)  CaTiO3(solid), ΔG° ± 85/(J · mol?1) = ?80,140 ? 6.302(T/K); 4CaO(solid) + 3TiO2(solid)  Ca4Ti3O10(solid), ΔG° ± 275/(J · mol?1) = ?243,473 ? 25.758(T/K); 3CaO(solid) + 2TiO2(solid)  Ca3Ti2O7(solid), ΔG° ± 185/(J · mol?1) = ?164,217 ? 16.838(T/K).The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.  相似文献   

9.
To obtain reliable thermodynamic data for Na2S(s), solid-state EMF measurements of the cell Pd(s)|O2(g)|Na2S(s), Na2SO4(s)|YSZ| Fe(s), FeO(s)|O2(g)ref| Pd(s) were carried out in the temperature range 870 < T/K < 1000 with yttria stabilized zirconia as the solid electrolyte. The measured EMF values were fitted according to the equation Efit/V (±0.00047) = 0.63650  0.00584732(T/K) + 0.00073190(T/K) ln (T/K). From the experimental results and the available literature data on Na2SO4(s), the equilibrium constant of formation for Na2S(s) was determined to be lg Kf(Na2S(s)) (±0.05) = 216.28  4750(T/K)−1  28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG(Na2S(s))/(kJ · mol−1) (±1.0) = 90.9  4.1407(T/K) + 0.5415849(T/K) ln (T/K). By applying third law analysis of the experimental data, the standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH(Na2S(s), 298.15 K)/(kJ · mol−1) (±1.0) = −369.0. Using the literature data for Cp and the calculated ΔfH, the standard entropy was evaluated to S(Na2S(s), 298.15 K)/(J · mol−1 · K−1) (±2.0) = 97.0.  相似文献   

10.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

11.
Single crystals of a new phosphate AgCr2(PO4)(P2O7) have been prepared by the flux method and its structural and the infrared spectrum have been investigated. This compound crystallizes in the monoclinic system with the space group C2/c and the parameters are, a = 11.493 (3) Å, b = 8.486 (3) Å, c = 8.791 (2) Å, β = 114.56 (2)°, V = 779.8 (3) Å3and Z = 4. Its structure consists of CrO6 octahedra sharing corners with P2O7 units to form undulating chains extending infinitely along the [110] direction. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the Ag+ ions are located. The infrared spectrum of this compound was interpreted on the basis of P2O74? and PO43? vibrations. The appearance of νsP–O–P in the spectrum suggests a bent P–O–P bridge for the P2O74? ions in the compound, which is in agreement with the X-ray data. The electrical measurements allow us to obtain the activation energy of (1.36 eV) and the conductivity measurements suggest that the charge carriers through the structure are the silver captions.  相似文献   

12.
A new cesium uranyl vanadate Cs4[(UO2)2(V2O7)O2] has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic symmetry with space group Pmmn and following cell parameters: a=8.4828(15) Å, b=13.426(2) Å and c=7.1366(13) Å, V=812.8(3) Å3, Z=2 with ρmes=5.39(2) g/cm3 and ρcal=5.38(1) g/cm3. A full-matrix least-squares refinement on the basis of F2 yielded R1=0.027 and wR2=0.066 for 62 parameters with 636 independent reflections with I⩾2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupled device detector. The crystal structure is characterized by 2[(UO2)2(V2O7)O2]4− corrugated layers parallel to (001). The layers are built up from distorted (UO2)O4 octahedra and divanadate V2O7 units resulting from two VO4 tetrahedra sharing corner. The distorted uranyl octahedra (UO2)O4 are linked by corners to form infinite 1[UO5]4− chains parallel to the a-axis. These chains are linked together by symmetrical divanadate units sharing two corners with each chain, the two last corners being oriented towards the same interlayer. The cohesion of the structure is assured by interlayer Cs+ ions. Their mobility within the interlayer space gives rise to a cationic conductivity with an important jump between 635°C and 680°C. Cs4[(UO2)2(V2O7)O2] is readily decomposed by water at 60°C to form the Cs-carnotite analog Cs2(UO2)2(V2O8) compound.  相似文献   

13.
《Chemical physics letters》2006,417(1-3):196-199
This paper reports the photo-luminescence spectroscopic results of Strontium–Barium–Niobate, Srx,Ba1−xNb2O5 (SBN, x = 0.61 for near congruent composition) crystals doped with Cr2O, at cryogenic temperature (20 K). The experimental results reveal the need of re-assignment of the Cr3+ ions defect centres in this material. For first time, a broad emission band in the near infrared region centred at ca. 950 nm is reported. This emission band has micro-seconds decaytime constant and a FWHM band-width > 1700 cm−1 and has been ascribed to the vibronically assisted 4T2  4A2 transition. A much narrower emission band centred at ca. 764 nm with milli-seconds decaytime constant and a FWHM band-width of ca. 170 cm−1 is correlated to the 2E  4A2 radiative transition (R-line).  相似文献   

14.
《Solid State Sciences》2007,9(11):1036-1048
The structure of [C3N2H5]4[Bi2Br10]·2H2O, (PBB) was determined by single crystal X-ray diffraction at 100 K. It crystallizes in the monoclinic space group C2/m, with a = 12.992(4) Å, b = 16.326(5) Å, c = 8.255(3) Å, β = 108.56°(3), V = 1659.9(9) Å3 and Z = 2. The structure consists of discrete binuclear [Bi2Br10]4− anions, ordered pyrazolium cations and water molecules. The crystal packing is governed by strong N–H⋯O and weak O–H⋯Br hydrogen bonds. A sequence of structural phase transitions in PBB was established on the basis of differential scanning calorimetry and dilatometric studies. Two reversible first-order phase transitions were found: (I  II) at 381/371 K (on heating/cooling) and (II  III) at 348/338 K. Dielectric response near both phase transitions is characteristic of crystals with the “plastic-like” phases. Over the phase III a low frequency dielectric relaxator is disclosed. The possible molecular motions in the PBB compound are characterized by the 1H NMR studies. The infrared spectra of polycrystalline compound in the temperature range 300–380 K are reported for the region 4000–400 cm−1. The observed spectral changes through the structural phase transition III  II are attributed to an onset of motion both of the pyrazolium cations and water molecules.  相似文献   

15.
《Solid State Sciences》2007,9(5):370-375
A new two-dimensional lead(II) vanadate, Ba3PbV4O14 has been synthesized by standard solid state techniques using BaCO3, PbO, and V2O5 as reagents. The structure of Ba3PbV4O14 was determined by single-crystal X-ray diffraction. Ba3PbV4O14 crystallizes in the triclinic space group P-1 (no. 2), with a = 7.2997(15) (Å), b = 7.2932(15) (Å), c = 13.379(3) (Å), α = 93.68(3)°, β = 99.68(3)°, γ = 91.49(3)°, V = 700.2(2) 3) and Z = 2. Ba3PbV4O14 exhibits a novel two-dimensional layered structure consisting of corner shared VO4 tetrahedra that are linked by edge shared PbO7 polyhedra, in which the Ba2+ cations occupy the interlayer region. The Pb2+ cations are in asymmetric coordination environments attributable to its lone pair. Infrared, Raman, and UV–vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dipole moment calculations are also presented.  相似文献   

16.
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T)  S(0)}/R for stoichiometric compositions of alkali disilicate (M2O · 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.  相似文献   

17.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

18.
《Solid State Sciences》2007,9(7):619-627
Three new crystal structures, isotypic with β-Zr2O(PO4)2, have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Å, b = 9.2641(2) Å, c = 12.5262(4) Å, V = 828.46(4) Å3 and Z = 8 for Th(OH)PO4; a = 7.0100(2) Å, b = 9.1200(2) Å, c = 12.3665(3) Å, V = 790.60(4) Å3 and Z = 8 for U(OH)PO4; a = 7.1691(3) Å, b = 9.2388(4) Å, c = 12.8204(7) Å, V = 849.15(7) Å3 and Z = 4 for Th2O(PO4)2. By heating, the M(OH)PO4 (M = Th, U) compounds condense topotactically into M2O(PO4)2, with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th2O(PO4)2 compared to that of U2O(PO4)2 seems to result from this unusual environment for tetravalent thorium.  相似文献   

19.
Molar calorimetric enthalpy changes ΔrHm(cal) have been measured for the biochemical reactions {cAMP(aq) + H2O(l)=AMP(aq)} and {PEP(aq) + H2O(l)=pyruvate(aq) + phosphate(aq)}. The reactions were catalyzed, respectively, by phosphodiesterase 3,5-cyclic nucleotide and by alkaline phosphatase. The results were analyzed by using a chemical equilibrium model to obtain values of standard molar enthalpies of reaction ΔrHm for the respective reference reactions {cAMP(aq) + H2O(l)=HAMP(aq)} and {PEP3−(aq) + H2O(l)=pyruvate(aq) + HPO2−4(aq)}. Literature values of the apparent equilibrium constants K for the reactions {ATP(aq)=cAMP(aq) + pyrophosphate(aq)}, {ATP(aq) + pyruvate(aq)=ADP(aq) + PEP(aq)}, and {ATP(aq) + pyruvate(aq) + phosphate(aq)=AMP(aq) + PEP(aq) + pyrophosphate(aq)} were also analyzed by using the chemical equilibrium model. These calculations yielded values of the equilibrium constants K and standard molar Gibbs free energy changes ΔrGm for ionic reference reactions that correspond to the overall biochemical reactions. Combination of the standard molar reaction property values (K, ΔrHm, and ΔrGm) with the standard molar formation properties of the AMP, ADP, ATP, pyrophosphate, and pyruvate species led to values of the standard molar enthalpy ΔfHm and Gibbs free energy of formation ΔfGm and the standard partial molar entropy Sm of the cAMP and PEP species. The thermochemical network appears to be reasonably well reinforced and thus lends some confidence to the accuracy of the calculated property values of the variety of species involved in the several reactions considered herein.  相似文献   

20.
《Solid State Sciences》2007,9(2):205-212
SrSi2O2N2 is an important host lattice for Eu2+ doped phosphors. Its crystal structure (space group P1, a = 7.0802(2) Å, b = 7.2306(2) Å, c = 7.2554(2) Å, α = 88.767(3)°, β = 84.733(2)°, γ = 75.905(2)° and V = 358.73(2) Å3, Z = 4) is isotypic with EuSi2O2N2: highly condensed silicate layers are separated by Sr2+. The samples are characterized by pronounced real structure effects owing to pseudosymmetry of partial structures. Polysynthetic twinning with domains of various sizes is ubiquitous and oriented intergrowth of domains with different orientations has also been observed and analysed in detail by means of electron diffraction and high-resolution electron microscopy. These effects also affect the X-ray powder pattern and were taken into account in a Rietveld refinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号