首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A damage accumulation model is presented for the study of the problem of crack initiation and stable growth in an elastic-plastic material. A centre-cracked specimen subjected to a uniform stress perpendicular to the crack plane is considered. A coupled stress and failure analysis is performed by using a finite element computer program based on J2-plasticity theory in conjunction with the strain energy density theory. After initial yielding, each material element follows a different equivalent uniaxial stress-strain behavior depending on the amount of energy dissipation by permanent deformation. A host of uniaxial stress-strain curves constituting parts of the same stress-strain curve were assigned to material elements for each increment of loading. The path-dependent nature of the onset of crack initiation and growth was revealed. The proposed model predicts faster crack growth rates than those obtained on the basis of a single uniaxial stress-strain curve and is closer to experimental observation.  相似文献   

2.
Based on the micromechanics-based constitutive model, derived in our preceding work [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. Journal of Engineering Mechanics-ASCE, in press, doi:10.1061/(ASCE)EM.1943.7889.0000039.], incorporating a multi-level damage model and a continuum damage model, the overall elastic behavior and damage evolution of laminated composite structures are studied in detail. The constitutive model is implemented into the finite element program ABAQUS using a user-subroutine UMAT to solve boundary value problems of the composite structures. The validity of the implemented constitutive model is assured by comparing the predicted stress–strain curves with experimental data available in literature under uniaxial tension with various fiber orientations. The results show that the proposed micromechanics-based constitutive model accurately predict the overall elastic-damage behavior of laminated composite structures having different material compositions, thicknesses and boundary conditions.  相似文献   

3.
A method for deducing the stress–strain uniaxial properties of metallic materials from instrumented spherical indentation is presented along with an experimental verification.An extensive finite element parametric analysis of the spherical indentation was performed in order to generate a database of load vs. depth of penetration curves for classes of materials selected in order to represent the metals commonly employed in structural applications. The stress–strain curves of the materials were represented with three parameters: the Young modulus for the elastic regime, the stress of proportionality limit and the strain-hardening coefficient for the elastic–plastic regime.The indentation curves simulated by the finite element analyses were fitted in order to obtain a continuous function which can produce accurate load vs. depth curves for any combination of the constitutive elastic–plastic parameters. On the basis of this continuous function, an optimization algorithm was then employed to deduce the material elastic–plastic parameters and the related stress–strain curve when the measured load vs. depth curve is available by an instrumented spherical indentation test.The proposed method was verified by comparing the predicted stress–strain curves with those directly measured for several metallic alloys having different mechanical properties.This result confirms the possibility to deduce the complete stress–strain curve of a metal alloy with good accuracy by a properly conducted instrumented spherical indentation test and a suitable interpretation technique of the measured quantities.  相似文献   

4.
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.  相似文献   

5.
A phenomenological model is proposed for characterizing rate-independent hysteresis exhibited by preconditioned soft tissues. The preconditioned tissue is modeled as an isotropic composite of a hyperelastic component and a dissipative (inelastic) component. Specifically, the constitutive equations are hyperelastic in the sense that the stress is determined by derivatives of a strain energy function. Inelasticity of the dissipative component is controlled by a yield function with different functional forms for the hardening variable during deformation loading and unloading. The constitutive equations proposed in this paper are simple. In particular, they depend on only seven material constants: three controlling the response of the elastic component and the remainder controlling the response of the dissipative component. More importantly, the material constants can be determined to match rather general loading and unloading behavior. It is observed that the hysteretic response of the model compares well with experimental data for passive uniaxial loading/unloading of Manduca muscle. Moreover, the present model treats partial loading and reloading of preconditioned tissue as elastic–plastic response, which is different from the treatment of pseudo-elastic models used in the literature.  相似文献   

6.
A new phenomenological inelastic constitutive model for rubberlike materials is presented and its good correspondence to cyclic measurements is demonstrated for both uniaxial tension- and simple shear-tests up to large deformations. The model implies strong nonlinearities, hysteresis, the influence of the loading history and remaining deformations after unloading. Results of finite element calculations are represented to show the suitability of the constitutive model within this method for practical applications.  相似文献   

7.
In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.  相似文献   

8.
The mechanical behavior of ideal truss lattice materials is controlled by the so-called direct action mechanism at the microscale which involves the uniform stretching and compressing of individual truss members. Standard homogenization techniques have been employed to develop a general micromechanics-based finite-strain constitutive model for truss lattice materials. Furthermore, a specialized small-strain plasticity model has been derived. Both models have been implemented in a finite-element program and used to simulate the anisotropic plastic behavior of the octet-truss lattice material in various applications including cyclic uniaxial loading, pure shear, and three-point bending. The constitutive model predictions agree well with the results obtained from discrete finite element models. Regarding the plasticity of the octet-truss lattice material, it has been found that the elastic domain is constrained by twelve pairwise parallel hyperplanes in the six-dimensional stress space. Moreover, the mechanism-based small-strain formulation reveals that the direction of plastic flow is normal to the pressure-dependent macroscopic yield surfaces.  相似文献   

9.
The process of unloading of an elastic–plastic loaded sphere in contact with a rigid flat is studied by finite element method. The sphere material is assumed isotropic with elastic-linear hardening. The numerical simulations cover a wide range of material properties and sphere radius. The contact load, stresses, and deformation in the sphere during both loading and unloading, are calculated for a wide range of interferences. Analytical dimensionless expressions are presented for the unloading load–deformation relation, the residual interference and the residual curvature of the sphere after complete unloading. A new measure termed elastic–plastic loading index is introduced to indicate the plasticity level of the loaded sphere. Some ideas regarding reversibility of the unloading process and elasticity of multiple loading unloading are also presented.  相似文献   

10.
Continuous loading and unloading experiments are performed at different strain rates to characterize the large deformation behavior of polyurea under compressive loading. In addition, uniaxial compression tests are carried out with multistep strain history profiles. The analysis of the experimental data shows that the concept of equilibrium path may not be applied to polyurea. This finding implies that viscoelastic constitutive models of the Zener type are no suitable for the modeling of the rate dependent behavior of polyurea. A new constitutive model is developed based on a rheological model composed of two Maxwell elements. The soft rubbery response is represented by a Gent spring while nonlinear viscous evolution equations are proposed to describe the time-dependent material response. The eight material model parameters are identified for polyurea and used to predict the experimentally-measured stress-strain curves for various loading and unloading histories. The model provides a good prediction of the response under monotonic loading over wide range of strain rates, while it overestimates the stiffness during unloading. Furthermore, the model predictions of the material relaxation and viscous dissipation during a loading-unloading cycle agree well with the experiments.  相似文献   

11.
A micromechanics-based constitutive model is developed to predict the effective mechanical behavior of unidirectional laminated composites. A newly developed Eshelby’s tensor for an infinite circular cylindrical inclusion [Cheng, Z.Q., Batra, R.C., 1999. Exact Eshelby tensor for a dynamic circular cylindrical inclusion. J. Appl. Mech. 66, 563–565] is adopted to model the unidirectional fibers and is incorporated into the micromechanical framework. The progressive loss of strength resulting from the partial fiber debonding and the nucleation of microcracks is incorporated into the constitutive model. To validate the proposed model, the predicted effective stiffness of transversely isotropic composites under far field loading conditions is compared with analytical solutions. The constitutive model incorporating the damage models is then implemented into a finite element code to numerically characterize the elastic behavior of laminated composites. Finally, the present predictions on the stress–strain behavior of laminated composite plate containing an open hole is compared with experimental data to verify the predictive capability of the model.  相似文献   

12.
Stress–strain response under constant and variable strain-rate is studied for selected models of inelastic behavior. The derived closed-form solutions for uniaxial loading enable simple evaluation of the strain-rate effects on the material response. The effect of an abrupt change of strain-rate is also examined. Non-Newtonian viscosity which decreases with an increasing strain-rate is incorporated in the analysis. Parabolic and hyperbolic hardening are used to describe the plastic response in monotonic loading. A three-dimensional generalization of an elastic–viscoplastic model is employed to study the stress relaxation in simple shear. A combined isotropic–kinematic hardening and the concept of overstress are used in the analysis. The unloading nonlinearity of the stress–strain curve is then discussed.  相似文献   

13.
The parameters for a crystal plasticity finite element constitutive law were calibrated for the aluminum–lithium alloy 2198 using micro-column compression testing on single crystalline volumes. The calibrated material model was applied to simulations of micro-cantilever deflection tests designed for micro-fracture experiments on single grain boundaries. It was shown that the load–displacement response and the local deformation of the grains, which was measured by digital image correlation, were predicted by the simulations. The fracture properties of individual grain boundaries were then determined in terms of a traction–separation-law associated with a cohesive zone. This combination of experiments and crystal plasticity finite element simulations allows the investigation of the fracture behavior of individual grain boundaries in plastically deforming metals.  相似文献   

14.
This paper uses a new constitutive model developed recently by the authors to analyse the multi-phase transformations in mono-crystalline silicon when subjected to nano-indentation. The finite element method is employed to the integration of the stress–strain relationship. A very good agreement is reached with the experimental measurements, with an accurate prediction of the observed pop-in and pop-out and detailed phase transformation events in loading and unloading. It was found that due to the change of microstructures, the material in the deformation zone could experience a local unloading during indentation loading or undergo a local loading during indentation unloading. The phase transformation events during indentation are closely related to the variation of both the deviatoric and hydrostatic stress components.  相似文献   

15.
The Oliver-Pharr method has been well established to measure Young’s modulus and hardness of materials without time-dependent behavior in nanoindentation. The method, however, is not appropriate for measuring the viscoelastic properties of materials with pronounced viscoelastic effects. One well-known phenomenon is the formation of unloading “nose” or negative stiffness during unloading that often occurs during slow loading-unloading in nanoindentation on a viscoelastic material. Most methods in literature have only considered the loading curve for analysis of viscoelastic nanoindentation data while the unloading portion is not analyzed adequately to determine the nonlinearly viscoelastic properties. In this paper, nonlinearly viscoelastic effects are considered and modeled using the nonlinear Burgers model. Nanoindentation was conducted on poly-methylmethacrylate (PMMA) using a spherical indenter tip. An inverse problem solving approach is used to allow the finite element simulation results to agree with the nanoindentation load–displacement curve during the entire loading and unloading stage. This approach has allowed the determination of the nonlinearly viscoelastic behavior of PMMA at submicron scale. In addition, the nanoindentation unloading “nose” has been captured by simulation, indicating that the negative stiffness in the viscoelastic material is the result of memory effect in time-dependent materials.  相似文献   

16.
The work reported in this paper is part of the ongoing research on the development of suitable elastic–plastic constitutive models for multiphase materials. This paper is concerned with the application of an elastic–plastic constitutive model based on the Mróz-multi-surface kinematic hardening rule to particulate metal matrix composites (PMMCs). Details of the Mróz-based elastic–plastic constitutive model for PMMCs and its explicit implementation are presented to enhance the applicability of the model for a stress controlled simulation. Comparison between numerical predictions and experimental results is also presented for uniaxial loading and biaxial proportional and non-proportional loading paths. For the load paths tested, reasonable agreement is observed between the numerical and the experimental results.  相似文献   

17.
The effects of the inelastic deformation of the matrix on the overall hysteretic behavior of a unidirectional titanium–nickel shape-memory alloy (TiNi-SMA) fiber composite and on the local pseudoelastic response of the embedded SMA fibers are studied under the isothermal loading and unloading condition. The multiaxial phase transformation of the SMA fibers is predicted using the phenomenological constitutive equations which can describe the two-step deformation due to the rhombohedral and martensitic transformations, and the inelastic behavior of the matrix material using the standard nonlinear viscoplastic model. The average behavior of the SMA composite is evaluated with the micromechanical method of cells. It is observed that the inelastic deformation of the matrix due to prior tension results in a compressive stress in the matrix after unloading of the SMA composite and this residual stress impedes the complete recovery of the pseudoelastic strain of the SMA fibers. This explains that a closed hysteresis behavior of the SMA composite is no longer observed in contrast with the case that an elastic behavior of matrix is assumed. The predicted local stress–strain behavior indicates that the cyclic response of matrix is crucial to the design of the hysteretic performance of the SMA composite under the repeated loading conditions.  相似文献   

18.
An elastic–plastic constitutive model is proposed to describe 1-D and 2-D ratchetting. The model is also able to give correct results for 2-D ratchetting when only uniaxial identification is used, while no special threshold or parameter is used for the case of non-proportional loading. The original feature of this model consist in the introduction of a ratchetting stress (material characteristic) along with the maximal stress supported in the history of loading and the plastic strain at the last unloading. In this paper uniaxial and 3-D formulations have been described based on a numerical implementation in the software Code_Aster. Uniaxial and also multiaxial identifications have been used. Simulations have been realized for proportional and non-proportional homogeneous cases, as well as for structures under anisothermal thermomechanical loading. The results of a benchmark on a structure, comparing experiment, simulations by this model and some other phenomenological models, and a polycrystalline model are presented. An analysis of error margin due to the choice of Mises criterion is exposed.  相似文献   

19.
A method for predicting the response of strain-rate sensitive structures under dynamic loading is developed. It is based on a finite difference method, the incremental theory of plasticity, and an elastic work-hardening viscoplastic material idealization. The strain-rate effect, loading and unloading conditions, and wave interactions are automatically accounted for, and adjusted if necessary, as the deformation proceeds. No iteration is required even if the field equations are nonlinear (e.g. non-linear constitutive equations, large deformation, or complicated geometry). We solve as an example the small deflection of a finite bar with a concentrated tip mass. The accuracy is comparable to that obtained by the well-known method of characteristics, a powerful tool for solving elastic-viscoplastic wave problems but which is restricted to small deflections and simple geometry. Because of the form of the constitutive relation selected (elastic work-hardening visco-plastic), several important new features of the dynamics response are brought out. These features are not revealed when simpler, computationally-convenient constitutive relations, such as rigid ideal-viscoplastic, rigid work-hardening viscoplastic and elastic ideal-viscoplastic are used.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号