首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The densities of tetraalkylammonium perchlorates R4NClO4(R  =  methyl, or ethyl, or propyl, or butyl) and ammonium perchlorate solutions in N, N - dimethylacetamide, dimethyl sulfoxide, and triethylphosphate have been measured over the whole composition range atT =  298.15 K. From these densities, apparent and limiting partial molar volumes of the electrolytes and ions have been evaluated and used to obtain the partial molar volume for theClO4   anion.  相似文献   

2.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

3.
This paper reports measurements of densities for the binary systems of an ionic liquid and an alkanol at T = (298.15, 303.15, and 313.15) K. The IL is trioctylmethylammonium bis(trifluoromethylsulfonyl)imide [OMA]+[Tf2N]? and the alkanols are methanol, or ethanol, or 1-propanol. The speed of sound at T = 298.15 K for the same binary systems was also measured. The excess molar volumes and the isentropic compressibilities for the above systems were then calculated from the experimental densities and the speed of sound, respectively. Redlich–Kister smoothing polynomial equation was used to fit the excess molar volume and the deviation in isentropic compressibility data. The partial molar volumes were determined from the Redlich–Kister coefficients. For all the systems studied, the excess molar volumes have both negative and positive values, while the deviations in isentropic compressibility are negative over the entire composition range.  相似文献   

4.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

5.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

6.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

7.
Isopiestic vapor-pressure measurements were made for Rb 2SO 4(aq) from molalitym =  (0.16886 to 1.5679 )mol · kg  1atT =  298.15 K and from m =  (0.32902 to 1.2282 )mol · kg  1at T =  323.15 K, and for Cs 2SO4 (aq) from m =  (0.11213 to 3.10815 )mol · kg  1at T =  298.15 K and fromm =  (0.11872 to 3.5095 )mol · kg  1atT =  323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic information for these systems were reviewed and the isopiestic equilibrium molalities and dilution enthalpies were critically assessed and recalculated in a consistent manner. Values of the four parameters of an extended version of Pitzer`s model for osmotic and activity coefficients with an ionic-strength dependent third virial coefficient were evaluated for both systems at both temperatures, as were those of the usual three-parameter Pitzer model. Similarly, parameters of Pitzer`s model for the relative apparent molar enthalpies of dilution were evaluated at T =  298.15 K for both Rb 2SO 4(aq) and Cs 2SO 4(aq) for the more restricted range of m⩽ 0.101 mol · kg  1. Values of the thermodynamic solubility product Ks(Rb2 SO 4, cr, 298.15 K )  =  (0.1392  ±  0.0154) and the CODATA compatible standard molar Gibbs free energy of formationΔfGmo (Rb 2SO 4, cr, 298.15 K )  =   (1316.91  ±  0.59)kJ · mol  1, standard molar enthalpy of formationΔfHmo (Rb 2SO 4, cr, 298.15 K )  =   (1435.07  ±  0.60)kJ · mol  1, and standard molar entropy S mo(Rb2 SO 4, cr, 298.15 K )  =  (199.60  ±  2.88)J · K  1· mol  1were derived. A sample of one of the lots of Rb 2SO 4(s) used for part of our isopiestic measurements was analyzed by ion chromatography, and was found to be contaminated with potassium and cesium in amounts that significantly exceeded the claims of the supplier. In contrast, analysis by ion chromatography of a lot of Cs 2SO 4(s) used for some of our experiments showed it was highly pure.  相似文献   

8.
Densities ρ, speeds of sound u, and refractive indices nD were measured from T = (278.15 to 343.15) K. Dynamic viscosities η were measured from T = (293.15 to 323.15) K. Surface tensions σ were determined from T = (288.15 to 313.15) K. The physical properties data were measured at atmospheric pressure. The coefficients of thermal expansion αp of the ionic liquids were calculated from the experimental values of the density at several temperatures. The Parachor method was used to predict the densities, the refractive indices, and the surface tensions of the ionic liquids, and a comparison between experimental and predictive values was made at T = 298.15 K.  相似文献   

9.
Biological buffers are of utmost importance for research in biological and clinical chemistry and in oceanography, but they may not be inert enough, thus interfering with the system under study. The N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid (TAPS) and N-[Tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid (TAPSO) are useful zwitterionic buffers for pH control as standard buffers in the physiological region of pH 7.7 to 9.1 for TAPS and 7.0 to 8.2 for TAPSO, respectively. In this work, interaction between these zwitterionic compounds and electrolytes of potassium acetate (KAc), potassium bromide (KBr), potassium chloride (KCl), and sodium chloride (NaCl) were investigated through measuring the densities of these buffers in aqueous and in aqueous electrolyte solutions by a high precision vibrating tube digital densitometer from T = (298.15 to 328.15) K under atmospheric pressure. In this series of measurements, the aqueous samples were prepared with various concentrations of the zwitterionic buffers, up to saturated conditions, and over salt concentrations from (1 to 4) mol · dm?3. The measured densities served to evaluate the cubic expansion coefficients, α(m, T) and the apparent molar volumes, V?(m, T). An empirical equation was used to correlate quantitatively the experimental densities over the entire concentration ranges.  相似文献   

10.
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T)  S(0)}/R for stoichiometric compositions of alkali disilicate (M2O · 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.  相似文献   

11.
The energetics of 1-benzosuberone was studied by a combination of calorimetric techniques and computational calculations.The standard (p° = 0.1 MPa) molar enthalpy of formation of 1-benzosuberone, in the liquid phase, was derived from the massic energy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The standard molar enthalpy of vaporization, at T = 298.15 K, was measured by Calvet microcalorimetry. From these two parameters the standard (p° = 0.1 MPa) molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived: ?(96.1 ± 3.4) kJ · mol?1. The G3(MP2)//B3LYP composite method and appropriate reactions were used to computationally calculate the standard molar enthalpy of formation of 1-benzosuberone, in the gaseous phase, at T = 298.15 K. The computational results are in very good agreement with the experimental value.  相似文献   

12.
Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10−2 at T = 298.15 K) and lowest in pure water (1.43 · 10−7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib.  相似文献   

13.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

14.
Excess molar volumes VmE have been calculated from measured density values over the whole composition range at T =  298.15 K and atmospheric pressure for six { N -methyl-2-pyrrolidinone  +  1,1-dimethylethyl methyl ether, or dipropyl ether, or 1,1-dimethylpropyl methyl ether, or diisopropyl ether, or dibutyl ether, or dipentyl ether}. Excess molar enthalpiesHmE were also measured for five { N -methyl-2-pyrrolidinone  +  1,1-dimethylethyl methyl ether, or dipropyl ether, or 1,1-dimethylpropyl methyl ether, or diisopropyl ether, or dibutyl ether} at T =  298.15 K and atmospheric pressure. The results are discussed in terms of intermolecular associations. The experimental results have been correlated with the UNIQUAC and NRTL equations.  相似文献   

15.
The densities at T = (293.15, 298.15, 303.15, 308.15, 310.15, and 313.15) K and sound velocities at T = (298.15 and 310.15) K have been measured for pentaerythritol in pure water and in (1, 5, and 10) wt% aqueous solutions of sodium and magnesium chloride. From these data apparent molar volumes, VΦ, and the apparent molar isenotropic compressibilities, KS,Φ, of the polyol have been determined. The limiting apparent molar quantities and corresponding transfer parameters were also obtained and discussed in terms of various solute–solvent and solute–cosolute interactions.  相似文献   

16.
The standard (p = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T = 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, –(263.9 ± 4.6) kJ · mol−1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines.  相似文献   

17.
Thermodynamics of solubility of the bioactive compound reserpine in various {2-(2-ethoxyethoxy)ethanol + water} mixed solvent systems was investigated in this study. The solubility of reserpine was determined from T = (298.15 to 338.15) K at atmospheric pressure using the reported method of Higuchi and Connors. Values of the measured solubility of reserpine were correlated with the ideal and Yalkowsky models. The root mean square deviations (RMSD) were observed to be less than 0.020 by an ideal model. However, the RMSD values were observed as less than 0.050 by the Yalkowsky model. The mole fraction solubility of reserpine was observed highest in pure 2-(2-ethoxyethoxy)ethanol (7.69 · 10−4 at T = 298.15 K) and lowest in pure water (9.71 · 10−7 at T = 298.15 K) at each temperature investigated. The results of the Van’t Hoff and Krug analysis (thermodynamic studies) indicated endothermic and spontaneous dissolution of reserpine in all {2-(2-ethoxyethoxy)ethanol + water} mixed solvent systems.  相似文献   

18.
The standard (p° = 0.1 MPa) molar enthalpy of formation β-tetralone was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of vaporization, at T = 298.15 K, was obtained using Calvet microcalorimetry.These values were used to derive the standard molar enthalpy of formation of the compound in the gaseous phase, at T = 298.15 K, ?(75.2 ± 2.5) kJ · mol?1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy function with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed.  相似文献   

19.
The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 105 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free energies of formation in crystalline and gaseous phases were undertaken. The standard molar enthalpies of formation of the title compounds were also estimated from two different computational approaches using density functional theory-based B3LYP and the multilevel G3 methodologies.  相似文献   

20.
The standard (p° = 0.1 MPa) molar enthalpies of combustion of 1-(2H)-phthalazinone and phthalhydrazide, both in the solid phase, were measured at T = 298.15 K by static bomb calorimetry. Further, the standard molar enthalpies of sublimation, at T = 298.15 K, of these two phthalazine derivatives were derived from the Knudsen effusion technique. The combustion calorimetry results together with those obtained from the Knudsen effusion technique, were used to derive the standard molar enthalpies of formation, at T = 298.15 K, in the gaseous phase for 1-(2H)-phthalazinone and phthalhydrazide, respectively as, (79.1 ± 1.8) kJ · mol?1 and ?(107.4 ± 2.4) kJ · mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号