首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

2.
The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O] = 0. The structural origin of this change is elucidated through nuclear magnetic resonance analyses and topological considerations. Furthermore, we find that addition of 1 mol% Fe2O3 exerts a complicated impact on the measured properties.  相似文献   

3.
Fast ion conducting (FIC) phosphate glasses and glass ceramic composites have gained considerable importance due to their potential applications in the fabrication of solid-state batteries and other electrochemical devices. We, therefore, present an overview on various types of FIC glasses and glass ceramic composites. Silver phosphate glasses doped with different weight percent of lithium chloride (1, 5, 10 and 15 wt.%) were synthesized by melt quenching technique. The Ag2O–P2O5–(15 wt.%) LiCl glass exhibited the maximum electrical conductivity (σ = 8.91 × 10? 5 S cm? 1 at room temperature and 4.16 × 10? 3 S cm? 1 at 200 °C). Using this glass as an amorphous host material, glass–ceramic composites of Ag2O–P2O5–(15 wt.%) LiCl:xAl2O3 (x = 5–50 wt.%) were prepared. The ionic transference number, electrical conductivity, ionic mobility and carrier ion concentration of the synthesized samples were measured. Ag2O–P2O5–(15 wt.%) LiCl:(25 wt.%) Al2O3 composite system exhibited the maximum σ value (σ = 3.32 × 10? 4 S cm? 1 at room temperature and 2.88 × 10? 2 S cm? 1 at 200 °C ). Solid‐state batteries using undoped Ag2O–P2O5 glass, Ag2O–P2O5–(15 wt.%) LiCl glass and glass ceramic composite containing 25 wt.% Al2O3 as electrolytes were fabricated. The open circuit voltage (OCV) values and discharge time of these cells were measured and compared. It is found that the glass ceramic composites show enhanced ionic conduction, better OCV value and discharge characteristics.  相似文献   

4.
《Journal of Non》2006,352(32-35):3613-3617
In this work several different compositions of CaO:Al2O3:SiO2 were prepared under vacuum atmosphere to study the glass forming ability of this system as a function of the SiO2 content. Samples containing 25–45 wt% of Al2O3, 31–44 wt% of CaO, 14–39 wt% of SiO2 and 4.1 wt% of MgO were prepared in graphite crucibles, for approximately 2 h at ∼ 1600 °C. The influence of silica content is discussed in terms of the mechanical properties, glass transition temperature, crystallization temperature, transmittance spectrum, refractive index, mass density, specific heat, thermal diffusivity, thermal conductivity and the temperature coefficient of optical path length change. The results reinforce the idea that these glasses are strong materials, having useful working-temperature range, good combination of thermal, mechanical and optical properties that could be exploited in many optical applications, in particular, as glass laser materials.  相似文献   

5.
Glass ceramic materials with composition 75TeO2–xBi2O3–(25-x)ZnO (x = 13, 12, 11) possessing transparency in the near- and mid-infrared (MIR) regions were studied in this paper. It was found that as the Bi2O3 content increased in the glass composition, the observed crystallization tendency is enhanced, and high crystal concentrations were obtained for the glasses with high Bi2O3 content while maintaining transparency in the MIR region. Crystal size in the glass ceramic was reduced by adjusting the heat treatment conditions; the smallest average size obtained in this study is 700 nm. Bi0.864Te0.136O1.568 was identified using X-ray Diffraction (XRD) and found to be the only crystal phase developed in the glass ceramics when the treatment temperature was fixed at 335 °C. The morphology of the crystals was studied using Scanning Electron Microscopy (SEM), and crystals were found to be polyhedral structures with uniform sizes and a narrow size distribution for a fixed heat treatment regime. Infrared absorption spectra of the resulting glass ceramics were studied. The glass ceramic retained transparency in the infrared region when the crystals inside were smaller than 1 μm, with an absorption coefficient less than 0.5/cm in the infrared region from 1.25 to 2.5 μm. The mechanical properties were also improved after crystallization; the Vickers Hardness value of the glass ceramic increased by 10% relative to the base glass.  相似文献   

6.
《Journal of Non》2005,351(46-48):3655-3662
The influence of small amount (1 or 2 wt%) of TiO2 additions and crystallization heat treatment on the elastic properties of a mica based glass ceramic have been investigated by ultrasonic velocity measurements. The mica based glass ceramic was prepared through controlled crystallization of a glass in the SiO2, Al2O3, CaO, MgO, K2O and F system. Evidences of TiO2 acting as a nucleating agent in this system was demonstrated. The longitudinal and transversal wave velocities of the as-prepared glass and the mica based glass ceramic were measured by using 5 MHz probes at room temperature. Elastic properties namely; longitudinal modulus, Young’s modulus, bulk modulus, and shear modulus were calculated from the ultrasonic velocity values measured and density values obtained experimentally. It has been observed that small amount of TiO2 additions caused a notable but not significant; however, the crystallization heat treatment had a profound effect on the elastic properties of the glass in the system studied.  相似文献   

7.
《Journal of Non》2007,353(16-17):1521-1528
Electric conductivity, microstructure and phase composition of (85-α)VO2–15VPG–αCu glass–ceramics (VPG = Vanadium–Phosphate–Glass) with copper content in the interval 0 wt%  α  15 wt% were investigated. VPG is the glass (molar %) 80V2O5–20P2O5. Only two phases: VO2 and VPG were identified when α  5 wt%. VO2 crystallites, VPG and pores are observed in these ceramic microstructures. Glass forms layers 1–2 μm thick in the space between VO2 crystallites. The copper is dissolved in VPG during glass–ceramic synthesis. It increases the electric conductivity of the glass and provides improvement of electrical bonds between VO2 crystallites. Therefore glass–ceramics conductivity exhibits an abrupt change of approximately 100× in the vicinity of the phase transition temperature, Tt, in VO2. A new crystalline phase appears in (85-α)VO2–15VPG–αCu ceramics when α  6 wt%. This phase is observed as small crystallites with the sizes of 1–5 μm. The increase in such phase content, with an increase in copper content is accompanied by a decrease in the content of VO2. Percolation along the new phase is a primary contributor to electric conductivity when α  8 wt%. In this case the conductivity exhibits no abrupt change in the vicinity of the temperature Tt. The new phase is probably the bronze CuxV2O4. It crystallizes from a liquid phase during glass–ceramics synthesis.  相似文献   

8.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

9.
《Journal of Non》2006,352(21-22):2254-2258
The aluminum coordination state in bismuth doped silica glass, which has new broad infrared emission at 1.3 μm regions, was investigated by using 27Al NMR, and it is demonstrated that 6-fold coordinated aluminum ions with corundum structure are dominant in bismuth doped silica glass until Bi2O3 concentrations of 1.0 mol% with Al2O3. The aluminum ion efficiently affects the creation of a Bi luminescent center at an intensity of Bi2O3 (1.0 mol%)–Al2O3 (2.3 mol%)–SiO2 (96.7 mol%); the sample is three orders of magnitude larger than the Bi2O3 (1.0 mol%)–SiO2 (99.0 mol%) sample. Aluminum ions with corundum structure in silica glass have a very important role for the configuration of peculiar Bi luminescent centers.  相似文献   

10.
《Journal of Non》2005,351(40-42):3195-3203
The glass structure and elastic properties of two bioglasses having bulk compositions near Na2CaSi2O6 (45S5.2) and Na2CaSi3O8 (55S4.1) were studied using both Raman and Brillouin scattering techniques. The annealed 45S5.2 glass has more Q2 and Q0 but less Q3 species than 55S4.1 glass due to lower (Si4+ + P5+)/(Na+ + Ca2+) ratio. Brillouin scattering measurements of the as-annealed glasses indicated that 45S5.2 glass is ca. 2% and 9% higher in Young’s and bulk moduli than 55S4.1 glass due to more modifiers in the 45S5.2 glass. Nearly full crystallization of 45S5.2 glass was observed after treating it at 715 °C for ca. 30 min. Devitrification of the 45S5.2 glass caused an increase in the elastic moduli up to ca. 30% (fully crystallized) but a negligible change in density. This 45S5.2-derived crystalline phase displayed at least 17 Raman bands, and has the average elastic moduli of 72.4 (bulk), 41.6 (shear), and 104.7 (Young’s) GPa. The comparable elastic moduli with hydroxyapatite and the ability for developing a HCA layer in simulated body fluid indicate that the 45S5.2-derived phase may be better for using as a substitute of bone than its parent glass.  相似文献   

11.
《Journal of Non》2006,352(21-22):2159-2165
The mechanism of crystallization from a B2O3-containing glass, with composition based in the CaO–MgO–Al2O3–SiO2 system, to a glass–ceramic glaze was studied by different techniques. Glass powder pellets were fast heated, simulating current industrial tile processing methods, at several temperatures from 700 to 1200 °C with a 5 min hold. Microstructural study by field emission scanning electron microscopy revealed that a phase separation phenomenon occurred in the glass, which promoted the onset of mullite crystallization at 900 °C. The amount of mullite in the glass heated between 1100 and 1200 °C was around 20 wt%, as determined by Rietveld refinement. The microstructure of the glass–ceramic glaze heated at 1160 °C consisted of interlocked, well-shaped, acicular mullite crystals longer than 4 μm, immersed in a residual glassy phase.  相似文献   

12.
《Journal of Non》2006,352(32-35):3663-3667
This paper presents the results of a study of thermal properties, solubility and response to 60Co γ-rays by electron spin resonance of the P2O5–CaO–Na2O glass system. The sample compositions were selected by fixing the P2O5 mol% content at 50 mol%, and varying the CaO mol% at 30 and 40 mol%. The spectrum is characterized by hyperfine doublet from 31P isotope (nuclear spin = 1/2), and its stability and response to the γ-ray dose were studied to establish the suitability of this glass as a γ-ray dosimeter.  相似文献   

13.
Bioactive glass ceramics (BGCs) have different rates of biodegradation and mechanical properties depending on their chemical compositions and sintering temperatures. The present study was aimed to develop the boron-rich, phosphorus-low CaO–SiO2–P2O5–B2O3 bioactive glasses (BG-Bx, X = 0, 10, 20) potentially for improving the mechanical properties of BGCs via low-temperature co-fired process. The B2O3-free BG-B0 shrunk well at ~ 726 °C and melted at over 1050 °C, while the onset shrinking and melting temperatures of the 20 mol% B2O3-doped BG-B20 was lowered to ~ 648 °C and ~ 952 °C, respectively. The BG-B20 thermally treated at 850–950 °C was transformed into wollastonite and calcium borate, and crystallization decreased the kinetics but did not inhibit the development of hydroxyapatite on their powder and disc surface when immersed in simulated body fluid. The in vitro degradation in Tris buffer confirmed that the degradation rate markedly increased with increasing boron content in BG-Bx. The compressive strength and flexural strength of the 10% BG-B20-reinforced 45S5 porous BGC sintered at 850 °C was nearly four times than that of 45S5 porous constructs. These studies suggest that the boron-rich, phosphorus-low CaO–SiO2–P2O5–B2O3 system is a promising biomaterial and potential low temperature co-fired aid for improving the mechanical and biological properties of porous BGCs.  相似文献   

14.
Solid oxide fuel cells (SOFC) correspond to efficient energy conversion systems coupled with low emissions of pollutants. In the aim to fabricate high temperature planar SOFC, glass and glass-ceramic sealants are developed to associate several criteria and properties : high thermal expansion (11.0 to 12.0 ? 10? 6 K? 1), high electrical resistance > 2 kΩ/cm2, good thermochemical compatibility with the other active materials of the fuel cell, and stability under H2 and H2O atmospheres at an operation temperature of 800 °C for a long time. According to these requirements, new BAS (BaO–Al2O3–SiO2) and BMAS (BaO–MgO–Al2O3–SiO2) glass-ceramic sealants have been developed by sol–gel route which is a non-conventional process for such applications. By this soft chemistry process, we anticipate a decrease in the glasses processing temperature due to a better homogeneity between cationic precursors in the mixture and a more important reactivity of materials. Experimental results in terms of thermomechanical properties, thermal expansion coefficient, crystalline phase content, and microstructure were discussed. In particular, the influence of the %BaO on the thermomechanical properties of glass-ceramics was described. Changes in properties of glass-ceramics were closely related to the microstructure. The influence of MgO on glass processing temperatures, on the structure and on the microstructure is evaluated in order to confirm that these glass-ceramics are promising candidates to SOFC applications. So, after performing a systematic investigation to the various systems, the properties of suitable glass were proposed.  相似文献   

15.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

16.
《Journal of Non》2006,352(30-31):3224-3229
We present spectroscopic results of PbO–Bi2O3–Ga2O3–BaO glass doped with different concentration of Nd2O3. These glasses have high refractive index (∼2.4) and large spectral transmission window. Measurements of absorption, emission and fluorescence lifetime are presented. From the calculations of the Judd–Ofelt parameters the radiative lifetimes, branching ratios and quantum efficiency of 4F3/2 level are calculated. The highest emission intensity was measured for the sample doped with 0.5 wt% of Nd2O3 with emission cross-section of 2.6 × 10−20 cm2, at 1069 nm, fluorescence lifetime of 110 μs, quantum efficiency of 82% and effective linewidth of 34 nm. The results point out this glass system as good candidate to be used in the development of photonic devices operating in the near infrared spectral range.  相似文献   

17.
《Journal of Non》2006,352(50-51):5403-5407
The electrical, thermal, optical, and morphological properties of CUO doped Bi2O3–B2O3–BaO–ZnO glasses were studied as a PbO-free, low firing transparent dielectric layer for plasma display panels (PDP). CuO improved the transmittance of Bi2O3–B2O3–BaO–ZnO by up to 84% in the visible region, eliminating a yellowish color typical of Bi2O3–B2O3–BaO–ZnO. A slight absorption within the near infrared (NIR) region was also observed. The glass transition temperature (Tg), thermal coefficient of expansion (TCE), and root-mean square (rms) roughness of 0.005 wt% CuO doped Bi2O3–B2O3–BaO–ZnO were found to be 455 °C, 81.4 × 10−7/K, respectively, and 162 ± 14 Å, which satisfied the requirements for a transparent dielectric layer for PDP application.  相似文献   

18.
《Journal of Non》2006,352(32-35):3739-3743
Niobium phosphate glasses with composition 33P2O5 · 27K2O · 40Nb2O5 are usually very stable with regard to crystallization resistance, with a relatively high glass transition temperature (Tg  750 °C), and are potentially suitable for nuclear waste immobilization. Porous niobium phosphate glasses were prepared by the replication method. The porous glasses were produced via the dip-coating of an aqueous slurry containing 20 wt% powdered glass into commercial polyurethane foams. The infiltrated foams were oxidized at 600 °C for 30 min to decompose the polymeric chains and to burn out the carbon, leading to a fragile glass skeleton. Subsequent heating above the glass transition temperature in the range of 780–790 °C for 1 h, finally resulted in mechanically stable glass foams, which maintained the original interconnected pore structure of the polyurethane foam. The struts showed the neck formation between particles, evidencing the initial stage of sintering. The open and interconnected porosity of the glassy foams lies in the range of 85–90 vol.%. It was concluded that porous niobium phosphate glasses are potential candidates for immobilizing liquid nuclear waste.  相似文献   

19.
《Journal of Non》2006,352(6-7):695-699
Glasses in the system (100  x)Li2B4O7x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (where x = 10, 30 and 50, in molar ratio) were fabricated via melt quenching technique. The compositional dependence of the glass transition (Tg) and crystallization (Tcr) temperatures was determined by differential thermal analysis. The as-quenched glasses on heat-treatment at 783 K for 6 h yielded monophasic crystalline strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) in lithium borate (Li2B4O7 (LBO)) glass matrix. The formation of nanocrystalline layered perovskite SBVN phase was preceded by the fluorite phase as established by both the X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The dielectric constants for both the as-quenched glass and glass–nanocrystal composite increased with increasing temperature in the 300–873 K range, exhibiting a maximum in the vicinity of the crystallization temperature of the host glass matrix. The electrical behavior of the glasses and glass–nanocrystal composites was characterized using impedance spectroscopy.  相似文献   

20.
《Journal of Non》2006,352(6-7):709-713
Variations in glass transition temperature, onset of crystallization, thermal expansion coefficient, density and molar volume with B2O3 concentration were studied in a series of xB2O3–(100  x)Ba(PO3)2 glasses with 0–10 mol% B2O3. DTA analysis and isothermal treatments for powdered glass samples reveal that ⩾7.5 mol% B2O3 addition suppresses surface crystallization during softening process. Raman spectroscopy suggests that the properties are related to the glass structure consisting of PO4 Q2 units with diborate and PO4–BO4 groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号