首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Corners and cracks are usually studied separately in the literature. To build a bridge connecting these two different but similar topics, in this paper the solutions for piezoelectric multi-wedges, which cover corners and interface corners, are used to study the cracks and interface cracks in piezoelectric materials. Moreover, the stress/electric intensity factors defined for cracks, interface cracks and interface corners are also extended to the general corners. By taking the special feature of Stroh formalism for anisotropic elasticity, all the solutions presented in this paper for piezoelectric materials preserve the same matrix form as those of the corresponding anisotropic problems. To see more clearly about the piezoeffects on the corners and cracks, most of the complex matrix form solutions are expanded in real component form for two typical piezoelectric ceramics with different poling directions.  相似文献   

2.
A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution, applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

3.
The random response of a piezoelectric thick shell in plane strain state under boundary random excitations is studied and illustrated with a piezoelectric cylindrical shell. The differential equation for electric potential is integrated radially to obtain the electric potential as a function of displacement. The random stress boundary conditions are converted into homogeneous ones by transformation,which yields the electrical and mechanical coupling differential equation for displacement under random excitations. Then this partial differential equation is converted into ordinary differential equations using the Galerkin method and the Legendre polynomials,which represent a random multi-degree-of-freedom system with asymmetric stiffness matrix due to the electrical and mechanical coupling and the transformed boundary conditions. The frequency-response function matrix and response power spectral density matrix of the system are derived based on the theory of random vibration. The mean-square displacement and electric potential of the piezoelectric shell are finally obtained,and the frequency-response characteristics and the electrical and mechanical coupling properties are explored.  相似文献   

4.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

5.
Imperfect bonding between constituents is studied where displacements, electric and magnetic static potentials are considered to have a jump proportional to the normal component of the mechanical traction, electric displacement and magnetic flux. This condition may model various interface damages or the thin glue layer between two adjacent phases. They are termed as the mechanically compliant, dielectrically weakly capacitance and magnetically weakly inductance at the interface. It is shown that while the more imperfect the interface is, the overall properties become weaker, such as longitudinal shear stiffness, out-of-plane piezoelectric coupling, and magnetoelectric coupling. Out-of-plane piezomagnetic coupling, transverse dielectric permittivity and transverse dielectric permeability exhibit no influence by imperfect bonding. The imperfect interface proposed is mimicked by the springs, capacitors and inductances for the mechanical, electric and magnetic interaction between the phases and are highly sensitive to the interphase properties. The results are compared mainly with the self consistent model reported in the literature and good agreements are shown.  相似文献   

6.
In this paper asymptotic models describing the mechanical and electric equilibrium state of two types of smart structures are presented and justified. The first structure consists of an anisotropic elastic thin plate with two surface bonded anisotropic piezoelectric patches and the second one is an anisotropic elastic sandwich thin plate with an inserted anisotropic piezoelectric patch. The two unknowns of the corresponding asymptotic models, the mechanical displacements of the structures and the electric potentials of the patches, are partially decoupled. The former are the solution of modified Kirchhoff-Love plate models, while the latter can be derived as explicit functions of the mechanical displacements. Moreover, different formulas for the electric potential arise as a consequence of diverse electric boundary conditions. We report numerical simulations with these asymptotic models.  相似文献   

7.
Propagation of P-wave in an unbounded elastic polymer medium which contains a set of nested concentric spherical piezoelectric inhomogeneities is formulated. The polymer matrix is made of Epoxy and is isotropic; each phase of the inhomogeneity is made of a different piezoelectric material and is radially polarized and has spherical isotropy. Note that the individual phases are homogeneous, and all interfaces are perfectly bonded. The scattered displacement and electric potentials in the matrix are expressed in terms of spherical wave vector functions and Legendre functions, respectively. The transmitted displacement and electric potentials within each phase of the piezoelectric particle are expressed in terms of Legendre functions. The equations of motion and electrostatics in each phase of the piezoelectric inhomogeneity lead to a system of coupled second order differential equations, which is solved using the generalized Frobenius series. The present theory is extended to the case where the core of the inhomogeneity is made of PZT-4 and its coating is made of functionally graded piezoelectric material (FGPM) whose microstructural composition varies smoothly from PZT-4 at the core–coating interface to Epoxy at the coating–matrix interface. The effects of different types of variation in the electro-mechanical properties of FGPM on scattering cross-section and other electro-mechanical fields are addressed. The present theory is valid for arbitrary coating thickness, and arbitrary frequencies.  相似文献   

8.
The interaction between a piezoelectric screw dislocation and an interphase layer in piezoelectric solids is theoretically investigated.Here,the dislocation located at arbitrary points inside either the matrix or the inclusion and the interfaces of the interphase layer are imperfect.By the complex variable method,the explicit solutions to the complex potentials are given,and the electroelastic fields can be derived from them.The image force acting on the dislocation can be obtained by the generalized PeachKoehler formula.The motion of the piezoelectric screw dislocation and its equilibrium positions are discussed for variable parameters.The important results show that,if the inner interface of the interphase layer is imperfect and the magnitude of degree of the interface imperfection reaches the certain value,two equilibrium positions of the piezoelectric screw dislocation in the matrix near the interface are found for the certain material combination which has never been observed in the previous studies(without considering the interface imperfection).  相似文献   

9.
In this paper, the problem of a subinterface crack in an anisotropic piezoelectric bimaterial is analyzed. A system of singular integral equations is formulated for general anisotropic piezoelectric bimaterial with kernel functions expressed in complex form. For commonly used transversely isotropic piezoelectric materials, the kernel functions are given in real forms. By considering special properties of one of the bimaterial, various real kernel functions for half-plane problems with mechanical traction-free or displacement-fixed boundary conditions combined with different electric boundary conditions are obtained. Investigations of half-plane piezoelectric solids show that, particularly for the mechanical traction-free problem, the evaluations of the mechanical stress intensity factors (electric displacement intensity factor) under mechanical loadings (electric displacement loading) for coupled mechanical and electric problems may be evaluated directly by considering the corresponding decoupled elastic (electric) problem irrespective of what electric boundary condition is applied on the boundary. However, for the piezoelectric bimaterial problem, purely elastic bimaterial analysis or purely electric bimaterial analysis is inadequate for the determination of the generalized stress intensity factors. Instead, both elastic and electric properties of the bimaterial’s constants should be simultaneously taken into account for better accuracy of the generalized stress intensity factors.  相似文献   

10.
IntroductionDuetotheirintrinsicelectromechanicalcouplingproperties,piezoelectricceramicshavebeenextensivelyusedindesignofvariouselectronicandelectromechanicaldevicessuchassensorsandactuators.Inrecentyears,mechanicalanalysisofdislocations ,cracks,cavitie…  相似文献   

11.
IntroductionCompositelaminatedcylindricalpanelhasbeenusedextensivelyasastructuralconfiguration,mainlyintheaerospaceindustry .Oneoftherecentadvancesinmaterialandstructuralengineeringisinthefieldofsmartstructureswhichincorporatesadaptivematerials.Bytakingadvantageofthedirectandconversepiezoelectriceffects,piezoelectriccompositestructurescancombinethetraditionalperformanceadvantagesofcompositelaminatesalongwiththeinherentcapabilityofpiezoelectricmaterialstoadapttotheircurrentenvironment.Therefore…  相似文献   

12.
In this investigation, the Stroh formalism is used to develop a general solution for an infinite, anisotropic piezoelectric medium with an elliptic inclusion. The coupled elastic and electric fields both inside the inclusion and on the interface of the inclusion and matrix are given. The project supported by the National Natural Science Foundation of China  相似文献   

13.
Quasicrystals (QCs) are sensitive to the piezoelectric (PE) effect. This paper studies static deformation of a multilayered one-dimensional (1D) hexagonal QC plate with the PE effect. The exact closed-form solutions of the extended displacement and traction for a homogeneous piezoelectric quasicrystal (PQC) plate are derived from an eigensystem. The general solutions for multilayered PQC plates are then obtained using the propagator matrix method when mechanical and electrical loads are applied on the top surface of the plate. Numerical examples for several sandwich plates made up of PQC, PE, and QC materials are provided to show the effect of stacking sequence on phonon, phason, and electric fields under mechanical and electrical loads, which is useful in designing new composites for engineering structures.  相似文献   

14.
A theoretical model is presented to study the elastic deformation process and frictional sliding behavior in single piezoelectric fibre push-out tests. Based on the theoretical model and some necessary simplifications, stress and electric fields are obtained for push-out tests of a circular piezoelectric fibre embedded in an elastic matrix. Numerical results of a piezoelectric fibre/expoxy matrix system are presented to verify the proposed formulation. The study shows that there is a significant effect of the piezoelectric parameter and embedded fibre length on stress transfer, electric field distribution and load-displacement curve of the frictional sliding process. This study also indicates that the piezoelectric effect has a distinct influence on the mechanical behavior and properties of the interface in a fibre/matrix system.  相似文献   

15.
This paper studies the reflection and transmission of two dimensional quasi P wave incident at an imperfect interface between two dissimilar Functionally Graded Piezoelectric Materials (FGPM) half-spaces. The imperfect bonding behavior between the two considered half-spaces is described by the interfacial imperfections. The imperfection is characterized by the normal stiffness and tangential stiffness using the linear spring model. These interface parameters (i.e normal stiffness and tangential stiffness) are dependent on the elastic properties of interphase. Secular equations have been derived analytically for both the half-spaces. Different cases of imperfect interfaces namely perfect interface, slip interface, weak bonding interface and unbounded interface have been assumed and discussed. Influence of material gradients on the reflection and transmission coefficients (RTC’s) have been inflicted graphically for all the four considered interface conditions. Further, a comparative study of the RTC’s with respect to the incident angle has been carried out for the different cases of imperfections. The obtained results may be useful for measuring imperfection at the interface and designing of SAW devices.  相似文献   

16.
刘轩  吴义鹏  裘进浩  季宏丽 《力学学报》2021,53(11):3045-3055
压电材料因其具有良好的机电耦合特性, 在振动能量俘获和结构振动控制领域有着良好的应用前景. 基于同步开关和电感的压电元件接口控制电路, 可以通过振荡电路工作原理调节压电元件的电压幅值和相位, 优化压电振动系统的机电能量转化. 优化型同步电荷提取技术即基于上述接口控制电路实现了压电振动能到电能的高效转换. 本文提出了一种衍生于优化型同步电荷提取电路的压电阻尼半主动控制电路, 借鉴反激变压器的原、副边能量转换特性, 实现了压电振动控制系统从电能到机械能的能量操控, 进而达到结构振动抑制的效果. 至此, 结合了压电电荷能提取与压电阻尼半主动控制技术的新电路, 以反激变压器为核心实现了压电振动能量的双向操纵. 论文首先介绍了相应的控制电路及工作原理, 推导了新型同步开关阻尼技术下的结构的振动阻尼比模型, 搭建了压电悬臂梁振动控制实验平台, 最终通过实验验证了理论模型, 并使用更简单的控制方法解决了振动控制系统的稳定性问题.   相似文献   

17.
In this paper, the propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals with material 6 mm are studied taking the electromechanical coupling into account. The electric field is approximated as quasi-static. The analytical solutions of Rayleigh waves are obtained. The 6×6 transfer matrix between two consecutive unit cells is obtained by means of the mechanical and electrical continuity conditions. The expression of the localization factor in disordered periodic structures is presented by regarding the variables of the mechanical and electrical fields as the elements of the state vector. The numerical results for a piezoelectric phononic crystal—PVDF-PZT-2 piezocomposite—are presented and analyzed. From the results we can see that the localization is strengthened with the increase of the disorder degree. The characteristics of the passbands and stopbands are influenced by different ratios of the thickness of the polymers to that of the piezoelectric ceramics. Disorder in elastic constant c11 of PZT-2 can also result in the localization phenomenon. The propagation and localization of Rayleigh waves in piezoelectric phononic crystals may be controlled by properly designing some structural parameters.  相似文献   

18.
The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated. Solutions to two kinds of electric boundary conditions on crack surfaces, i.e. electric impermeable and electric permeable, are obtained. Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations,which can be solved numerically. The effects of electrical load, geometry criterion of piezoelectric strips, relative location of cracks and material properties on the dynamic energy release rate are examined.  相似文献   

19.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

20.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号