首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing.  相似文献   

2.
All metallic, hollow sandwich cylinders having ultralight two-dimensional (2D) prismatic cores are optimally designed for maximum thermo-mechanical performance at minimum mass. The heated cylinder is subjected to uniform internal pressure and actively cooled by forced air convection. The use of two different core topologies is exploited: square- and triangular-celled cores. The minimum mass design model is so defined that three failure modes are prevented: facesheet yielding, core member yielding, and core member buckling. The intersection-of-asymptotes method, in conjunction with the fin analogy model, is employed to build the optimization model for maximum heat transfer rate. A non-dimensional parameter is introduced to couple the two objectives—structural and thermal—in a single cost function. It is found that the geometry corresponding to maximum heat transfer rate is not unique, and square-celled core sandwich cylinders outperform those having triangular cells. The eight-layered sandwich cylinders with square cells have the best overall performance in comparison with other core topologies. Whilst a sandwich cylinder with shorter length is preferred for enhanced thermo-mechanical performance, the influence of the outer radius of the cylinder is rather weak.  相似文献   

3.
金字塔栅格夹心夹层板动力响应分析   总被引:4,自引:0,他引:4  
本文将金字塔形栅格夹心夹层板假设成均匀夹心夹层板,应用Reissner夹层板理论,对其自振频率以及在简谐荷载下的强迫振动进行了研究,并以简支板为例,得到其解析解,通过与有限元分析进行比较,两者结果吻合良好。并把金字塔形栅格夹层板与同质量实体板进行比较,得出金字塔形栅格夹层板具有更好动力性能。  相似文献   

4.
本文针对碳纤维复合材料点阵结构,从结构设计、制备工艺、平压性能、剪切性能等方面对其进行试验表征及理论模型研究.设计四种成型碳纤维复合材料金字塔点阵结构的思想,并采用一种新的制备工艺即预浸料二次成型工艺制备试样,试验结果表明,该工艺能最大程度发挥纤维增强潜力.通过实验揭示在平压载荷下杆件屈曲、杆件断裂、杆件分层脱胶失效机理,在剪切载荷下杆件屈曲、杆件分层、杆件脱胶失效机理,基于结构力学基础原理,建立相应理论模型,经过修正之后的理论模型均能较好预报典型载荷下力学性能.本文研究发现碳纤维复合材料金字塔点阵结构具有密度低、比强度大、比刚度高等优点,且芯子中具有大量空间,可以制备轻质多功能结构.  相似文献   

5.
We present a novel method for fabricating carbon fiber composite sandwich panels with lattice core construction by means of electrical discharge machining (EDM). First, flat-top corrugated carbon fiber composite cores were fabricated by a hot press molding method. Then, two composite face sheets were bonded to each corrugated core to create precursor sandwich panels. These panels were transformed into sandwich panels with near-pyramidal truss cores by EDM plunge-cutting the corrugated core between the face sheets with a shaped cuprite electrode. The flat top corrugation permits adhesive to be applied consistently, and the selected dimensions leave a substantial bond area after cutting, resulting in a strong core-to-sheet bond. The crushing behavior of this novel construction was investigated in flatwise compression, and the results were compared to analytical expressions for strength and stiffness.  相似文献   

6.
铝合金材料蜂窝夹层板结构具有在较低体重情况下的高硬度和高抗冲击性能力。近年来许多关于其在低应变率下冲击能量吸收性质的文献纷纷涌现,但是对于其在高应变率下的能量吸收力学性能的研究却非常贫乏。为了更好地研究铝合金材料蜂窝夹层板结构在高应变率下的能量吸收力学性能,其结构组成材料本身的动态力学性能必须首先得到充分研究。本文介绍和总结了铝合金材料AA-6061的两种热处理成品,T6与OA,在室温(24℃)与低温( -170℃)下的动态拉伸力学性能。在本研究中,霍普金生拉伸杆被应用,拉伸应变率为103每秒。  相似文献   

7.
唐欣  Vikas Prakash 《实验力学》2007,22(3):305-313
铝合金材料蜂窝夹层板结构具有在较低体重情况下的高硬度和高抗冲击性能力。近年来许多关于其在低应变率下冲击能量吸收性质的文献纷纷涌现,但是对于其在高应变率下的能量吸收力学性能的研究却非常贫乏。为了更好地研究铝合金材料蜂窝夹层板结构在高应变率下的能量吸收力学性能,其结构组成材料本身的动态力学性能必须首先得到充分研究。本文介绍和总结了铝合金材料AA-6061的两种热处理成品,T6与OA,在室温(24℃)与低温(-170℃)下的动态拉伸力学性能。在本研究中,霍普金生拉伸杆被应用,拉伸应变率为10^3每秒。  相似文献   

8.
Wires are great candidates as the raw material for truss periodic cellular metals because they can display high strength as in piano wires, are easy to fabricate, and can be controlled to be defect free. New approaches based on tri-axial weaving of wires to create ideal trusses, i.e., tetrahedral and Kagome truss have been presented. The mechanical properties of the sandwich panels with the truss cores fabricated by using the new approaches under compression and bending loadings are analyzed by elementary beam theory and experiments. The relative density, stiffness, and strength of the sandwich panels are estimated by the derived equations and compared with the measured results. The failure mechanisms of the sandwich panels are analyzed, and also benefits and shortcomings of each approach with respect to mechanical performance and production are discussed.  相似文献   

9.
Metallic sandwich panels with textile cores have been analyzed subject to combined bending and shear and then designed for minimum weight. Basic results for the weight benefits relative to solid plates are presented, with emphasis on restricted optimizations that assure robustness (non-catastrophic failure) and acceptable thinness. Select numerical simulations are used to check the analytical results and to explore the role of strain hardening beyond failure initiation. Comparisons are made with competing concepts, especially honeycomb and truss core systems. It is demonstrated that all three systems have essentially equivalent performance. The influence on the design of a concentrated compressive stress that might crush the core has been explored and found to produce relatively small effect over the stress range of practical interest. “Angle ply” cores with members in the ±45° orientation are found to be near optimal for all combinations of bending, shear and compression.  相似文献   

10.
Structural modeling of sandwich structures with lightweight cellular cores   总被引:2,自引:0,他引:2  
An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores. The project supported by the National Basic Research Program of China (2006CB601202), the National Natural Science Foundation of China (10328203, 10572111, 10572119, 10632060), the National 111 Project of China (B06024), the Program for New Century Excellent Talents in University (NCET-04-0958), the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment, and the Doctorate Foundation of Northwestern Polytechnical University.  相似文献   

11.
新型复合材料点阵结构的研究进展   总被引:2,自引:0,他引:2  
复合材料点阵结构是一种具有轻质、高比强、高比刚以及多功能潜力的新型结构材料, 近几年受到国外学者的极大关注, 是新一代结构材料一体化的理想结构材料. 本文概述了点阵复合材料及结构的发展历程, 包括复合材料点阵结构的拓扑构型设计、制备工艺研究、力学性能表征、失效模式分析、预报模型评价等方面的工作, 并给出了复合材料点阵结构的力学性能、失效模式和理论数值模型汇总表以及修正后的材料强度与密度关系图. 同时, 本文对复合材料点阵结构可能应用的领域进行预测, 并对其未来发展进行了展望.   相似文献   

12.
Small mass impactors, such as runway debris and hailstones may result in a wave controlled local response, which is essentially independent of boundary conditions. The higher-order impact model of sandwich beams presented by Mijia and Pizhong [Mijia, Y., Pizhong, Q., 2005. Higher-order impact modeling of sandwich structures with flexible core. International Journal of Solids and Structures 42 (10), 5460–5490] is developed and enhanced to impact analysis of sandwich panels with transversely flexible cores. Therefore, an improved fully dynamic higher-order impact theory is developed to analyze the low-velocity impact dynamic of a system which consists of a composite sandwich panel with transversely flexible core and multiple small impactors with small masses. Impacts are assumed to occur normally and simultaneously over the top face-sheet with arbitrary different masses and initial velocities of impactors. The contact forces between the panel and the impactors are treated as the internal forces of the system. First shear deformation theory (FSDT) is used for the face-sheets while three-dimensional elasticity is used for the soft core. The fully dynamic effects of the core layer and the face-sheets are considered in this study. Contact area can be varied with contact duration. The results in multiple mass impacts over sandwich panels that are hitherto not reported in the literature are presented based on proposed improved higher-order sandwich plate theory (IHSAPT). Finally, for the case study of the single mass impact, the numerical results of the analysis have been compared either with the available experimental results or with some theoretical results. As no literature could be found on the impact of multiple impactors over sandwich panels, the present formulation is validated indirectly by comparing the response of two cases of double small masses and single small mass impacts. Also, in order to demonstrate the applicability of the validation, the analytical relation of minimum distance between two impactors is derived based on Olsson’s wave control principle in this paper.  相似文献   

13.
Lightweight metallic truss structures are currently being investigated for use within sandwich panel construction. These new material systems have demonstrated superior mechanical performance and are able to perform additional functions, such as thermal management and energy amelioration. The subject of this paper is an examination of the mechanical response of these structures. In particular, the retention of their stiffness and load capacity in the presence of imperfections is a central consideration, especially if they are to be used for a wide range of structural applications. To address this issue, sandwich panels with pyramidal truss cores have been tested in compression and shear, following the introduction of imperfections. These imperfections take the form of unbound nodes between the core and face sheets—a potential flaw that can occur during the fabrication process of these sandwich panels. Initial testing of small scale samples in compression provided insight into the influence of the number of unbound nodes but more importantly highlighted the impact of the spatial configuration of these imperfect nodes. Large scale samples, where bulk properties are observed and edge effects minimized, have been tested. The stiffness response has been compared with finite element simulations for a variety of unbound node configurations. Results for fully bound cores have also been compared to existing analytical predictions. Experimentally determined collapse strengths are also reported. Due to the influence of the spatial configuration of unbound nodes, upper and lower limits on stiffness and strength have been determined for compression and shear. Results show that pyramidal core sandwich structures are robust under compressive loading. However, the introduction of these imperfections causes rapid degradation of core shear properties.  相似文献   

14.
This article reports an experimental study carried out with the aim of quantifying performance and failure modes of sandwich structures when subjected to impulsive blast loading. In particular, performance enhancement with respect to solid panels of equal mass per unit area is assessed. Likewise, the optimal distribution of the mass per unit area in the design of sandwich structures is investigated by comparing the behavior of sandwich structures with various distributions of face sheets thickness. By employing a previously developed FSI experiment, the study confirmed that usage of sandwich structures is beneficial and that performance enhancements, in terms of maximum panel deflection, as high as 68% are possible. The study also confirms theoretical and computational analyses suggesting that use of soft cores maximizes the benefits. Another interesting aspect revealed by this work is that the level of enhancement is highly related to the applied normalized impulse. The same distribution of mass per unit area between face sheets resulted in different normalized maximum deflection. A better performance enhancement was achieved at lower impulses. Here again, failure modes and their sequence seem to be the directly related to this finding. The work here reported clearly reveals a number of important features in the study of lightweight structures and points out to the synergies between structure geometry, materials, manufacturing methods, and threat levels as manifested by the strength of the impulse. Further theoretical and computational studies accounting for experimentally observed failure modes and its interdependence with the fabrication methods is needed to achieve additional predictive capabilities.  相似文献   

15.
采用弹道冲击摆系统开展了爆炸载荷下分层梯度泡沫铝夹芯板的变形/失效模式和抗冲击性能实验研究,并配合激光位移传感器得到试件后面板中心点的挠度-时程响应曲线。研究了炸药当量和芯层组合方式对夹芯板试件变形/失效模式和抗冲击性能的影响。实验结果表明,泡沫铝夹芯板的变形/失效模式主要表现为面板的非弹性大变形,芯层压缩变形、芯层拉伸断裂以及芯层剪切失效。在研究爆炸冲量范围内,非梯度芯层夹芯板的抗冲击性能明显优越于所有分层梯度芯层夹芯板。对于分层梯度夹芯板试件,爆炸冲量较小时芯层组合形式对分层梯度芯层夹芯板的抗冲击性能的影响不大,而爆炸冲量较大时,最大相对密度芯层靠近前面板组合形式的分层梯度夹芯板试件抗冲击性能较好。研究结果可为泡沫金属夹芯结构的优化设计提供参考。  相似文献   

16.
通过推导不同边界条件的圆柱状夹层多孔材料散热指标,研究了一种特殊结构的圆柱状夹层多孔材料主动散热问题。这种圆柱夹层材料的每一层胞体个数相同,胞体尺寸随着外径的增大而增大,从而保持每一层胞体的相对密度相同。通过计算两种不同换热边界条件下圆柱夹层多孔材料的散热性能,比较并分析了与夹层材料层数相对应的最大散热效率和最优相对密度等指标,并最终得到这些工况下的最优质量。通过分析得到,无论哪种边界条件,正六边形胞体的夹层结构散热性能优于其他构型。同时当为达到某一限定散热效率值时,正六边形胞体结构的质量最小,正六边形构型的多孔材料具有明显的综合性能优势。  相似文献   

17.
In this paper, the transient temperature distribution and the thermomechanical response of sandwich tubes with prismatic cores are analyzed considering active cooling. The effective thermal conductivities of prismatic cores with active cooling are derived. By using the effective thermal conductivities, the transient temperature fields of the tubes are predicted and are found to be very close to the results of finite element simulations, which confirms the correctness of the effective thermal conductivity. Based on the high-order sandwich shell theory, the thermal structural responses of sandwich structures are studied and compared with the results of finite element simulations. The reduction of the thermal structural responses as a result of active cooling is studied to demonstrate the advantages of prismatic cellular materials. The design of replacing the solid metal with cellular materials which has the capability of active cooling can reduce the temperature and the thermal structural response of the structure.  相似文献   

18.
任鹏  张伟  刘建华 《爆炸与冲击》2016,36(1):101-106
基于非药式水下爆炸冲击波加载技术,对格栅型夹层结构的动态响应及抗冲击防护性能,进行了实验研究。利用高速相机,对夹层板的动态变形情况进行了实时观测,获得了格栅夹层板气背面在水下冲击波作用下的动态响应历程,并结合相同面密度单层板在水下冲击波作用下的抗冲击变形结果,对比分析了铝合金格栅夹层板的抗冲击防护性能,获得了格栅型夹层板的气背面板最大变形量与水下冲击波量纲一冲量间的定量关系。  相似文献   

19.
An analytical model is developed for the response of clamped monolithic and sandwich beams subjected to impulse loading over a central loading patch. A number of topologies of sandwich core are investigated, including the honeycomb core, pyramidal core, prismatic diamond core and metal foam. The various cores are characterised by their dependencies of through-thickness compressive strength and longitudinal tensile strength upon relative density. Closed-form expressions are derived for the deflection of the beam when the ratio r of length of loading patch to the beam span exceeds 0.5. In contrast, an ordinary differential equation needs to be solved numerically for the choice r<0.5. Explicit finite element calculations show that most practical shock loadings can be treated as impulsive and the accuracy of the impulsive analytical predictions is confirmed. The analytical formulae are employed to determine optimal geometries of the sandwich beams that maximise the shock resistance of the beams for a given mass. The optimisation reveals that sandwich beams have a superior shock resistance relative to monolithic beams of the same mass, with the prismatic diamond core sandwich beam providing the best performance. Further, the optimal sandwich beam designs are only mildly sensitive to the length of the loading patch.  相似文献   

20.
A prior assessment of the response of a metallic sandwich panels to water blast has identified soft and strong core responses and outlined the advantages of softness. Ensuing analysis has provided mechanism maps that distinguish these responses. The present article extends these assessments by developing an analytic model for the wet face response, inclusive of fluid/structure interaction, that can be used for a wide range of core topologies. The model addresses cavitation and incorporates the momentum of reconstituted water attached to the wet face. It assumes a transient dynamic strength of the core associated with dynamic buckling. The model includes coefficients that have been independently characterized using numerical simulations. The fidelity of the analytic model has also been assessed using simulations. The results reveal that analytic predictions of the wet face velocities are quite accurate for most of the soft cores examined. The implication is that the models may be used as reliable input to panel-level simulations for predicting such metrics as the reaction forces and the displacements. Discrepancies arise for strong cores with relatively large push back stress, and for systems with very thin wet faces, suggesting that embellishments are required for panels incorporating such features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号