首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10–50 N), of sliding speeds (1–10 mm/s) and frequencies (100–2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.  相似文献   

2.
Three-dimensional numerical simulations were carried out to study the ballistic resistance of ductile targets subjected to normal impact by the projectiles. 12 mm thick Weldox 460 E steel targets were impacted by 20 mm diameter conical nosed projectiles and 1 mm thick 1100-H12 aluminum targets were impacted by 19 mm diameter ogive nosed projectiles. The internal nose angle of conical projectile was varied (33.4°–180°) and found to have significant effect on the ballistic limit of 12 mm thick Weldox 460 E steel target. Similarly, the caliber radius head (CRH) of ogive nosed projectile was varied (0–2.5) and found to have significant effect on the ballistic limit of 1 mm thick 1100-H12 aluminum target. The ballistic limit of 12 mm thick Weldox 460 E steel target increased almost linearly with the decrease in the projectile nose angle. While the ballistic limit of 1 mm thick 1100-H12 aluminum target increased as the CRH increased from 0 to 0.5 and with further increase in CRH to 1.0, 1.5, 2.0 and 2.5 its values were found to drop quite significantly. ABAQUS/Explicit finite element code was used to carry out the numerical simulations.  相似文献   

3.
Lean limit flames in methane/hydrogen/air mixtures propagating in tubes of internal diameters (ID) of 6.0, 8.9, 12.3, 18.4, 25.2, 35.0, and 50.2 mm have been experimentally studied. The flames propagated upward from the open bottom end of the tube to the closed upper end. The content of hydrogen in the fuel gas has been varied in the range 0–40 mol%. Lean flammability limits have been determined; flame shapes recorded and the visible speed of flame propagation measured. Most of the observed limit flames in tubes with diameters in the range of 8.9–18.4 mm had enclosed shape, and could be characterized as distorted or spherical flame balls. The tendency was observed for mixtures with higher hydrogen content to form smaller size, more uniform flame balls in a wider range of tube diameters. At hydrogen content of 20% or more in the fuel gas, limit flames in largest diameters (35.0 mm and 50.2 mm ID) tubes had small, compared to the tube diameter, size and were “lens”-shaped. “Regular” open-front lean limit flames were observed only for the smallest diameters (6.0 mm and 8.9 mm) and largest diameters (35.0 and 50.2 mm ID), and only for methane/air and (90% CH4 + 10% H2)/air mixtures, except for 6 mm ID tube in which all limit flames had open front. In all experiments, except for the lean limit flames in methane/air and (90% CH4 + 10% H2)/air mixtures in the 8.9 mm ID tube, and all limit flames in 6.0 mm ID tube, visible flame speeds very weakly depended on the hydrogen content in the fuel gas and were close to- or below the theoretical estimate of the speed of a rising hot bubble. This observation suggests that the buoyancy is the major factor which determines the visible flame speed for studied limit flames, except that last mentioned. A decrease of the lean flammability limit value with decreasing the tube diameter was observed for methane/air and (90% CH4 + 10% H2)/air mixtures for tubes having internal diameters in the range of 18.4–50.2 mm. This effect has been attributed to the stronger combined effect of the preferential diffusion and flame stretch in narrower tubes for flames which resemble rising bubble.  相似文献   

4.
Full scale bubbly flow experiments were performed on a 6 m flat bottom survey boat, measuring the void fraction, bubble velocity and size distributions as the bubbles naturally entrained at the bow of the boat interact with the boat’s boundary layer. Double-tip sapphire optical probes capable of measuring bubbles down to 50 μm in diameter were specifically designed and built for this experiment. The probes were positioned under the hull at the bow near the bubble entrainment region and at the stern at the exit of the bottom flat plate. Motorized positioners were used to vary the probe distance to the wall from 0 to 50 mm. The experiments were performed in fresh water (Coralville Lake, IA) and salt water (Panama City Beach, FL), at varying velocities with most data analysis performed at 10, 14 and 18 knots. The results indicate that the bubbles interact significantly with the boundary layer. At low velocity in fresh water, bubble accumulation under the hull and coalescence are evident by the presence of large bubbles at the stern. At high speeds bubble breakup dominates and very small bubbles are produced near the wall. It is also observed that salt water inhibits coalescence, even at low boat speeds. The void fraction increases with speed beyond 10 knots and peaks near the wall. Bubble velocities show slip with the wall at all speeds and exhibit large RMS fluctuations, increasing near the wall.  相似文献   

5.
In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle–particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two 1 mm radius particles with initial particle velocities of 50–150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic–plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic–plastic material behavior results in post collision velocities 16–50% of their pre-collision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic–plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic–plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion.  相似文献   

6.
The heat transfer and the pressure drop characteristics of turbulent flow of air (10,000 < Re < 100,000) through rectangular and square ducts with combined internal axial corrugations on all the surfaces of the ducts and with twisted-tape inserts with and without oblique teeth have been studied experimentally. The axial corrugations in combination with twisted-tapes of all types with oblique teeth have been found to perform better than those without oblique teeth in combination with axial corrugations. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, corrugation angle, corrugation pitch, twist ratio, space ratio, length, tooth horizontal length and tooth angle of the twisted-tape, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to 55% heat duty increase occurs for the combined axial corrugation and regularly spaced twisted-tape elements inserts with oblique teeth case compared to without oblique teeth twisted-tape inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 47% for the combined enhancement geometry than the individual enhancement geometries. However, full-length and short-length twisted-tapes with oblique teeth in combination with axial corrugations show only marginal improvements over the twisted-tapes without oblique teeth.  相似文献   

7.
The micro combustor is a key component of the micro thermophotovoltaic (TPV) system. Improving the wall temperature of the micro combustor is an effective way to elevate the system efficiency. An experimental study on the wall temperature and radiation heat flux of a series of cylindrical micro combustors (with a backward-facing step) was carried out. For the micro combustors with d = 2 mm, the regime of successful ignition (under the cold wall condition) was identified for different combustor lengths. Acoustic emission was detected for some cases and the emitted sound was recorded and analyzed. Under the steady-state condition, the effects of the combustor diameter (d), combustor length (L), flow velocity (u0) and fuel–air equivalence ratio (Ф) on the wall temperature distribution were investigated by measuring the detailed wall temperature profiles. In the case that the micro combustor is working as an emitter, the optimum efficiency was found at Ф  0.8, independent of the combustor dimensions (d and L) and the flow velocity. Under the experimental conditions employed in the present study, the positions of the peak wall temperature were found to be about 8–11 mm and 4–6 mm from the step for the d = 3 mm and d = 2 mm micro combustors, respectively, which are 8–11 and 8–12 times of their respective step heights. This result suggests that the backward-facing step employed in the combustor design is effective in stabilizing the flame position.  相似文献   

8.
Oil–water two-phase flow experiments were conducted in horizontal ducts made of Plexiglas® to determine the in situ oil fraction (holdup) by means of the closing valves technique, using mineral oil (viscosity: 0.838 Pa s at 20 °C; density: 890 kg m−3) and tap water. The ducts present sudden contractions from 50 mm to 40 mm i.d. and from 50 mm to 30 mm i.d., with contraction ratios of 0.64 and 0.36, respectively. About 200–320 tests were performed by varying the flow rates of the phases. Flow patterns were investigated for both the up- and downstream pipe in order to assess whether relevant variations of the flow patterns across the sudden contraction take place. Data were then compared with predictions of a specific correlation for oil–water flow and some correlations for gas–water flow. A drift-flux model was also applied to determine the distribution parameter.  相似文献   

9.
A five-piece rim and a two-piece bolt-connected rim were investigated to examine stress levels and fatigue lives on critical regions. The finite element models of the rim/tire assemblies were developed and validated through tire engineering data and previously validated modelling approaches. The rim/tire assemblies were simulated under two conditions, (1) application of a 23,100 kg static load followed by a 24.14 km/h travelling speed and an 82° wheel angle, and (2) application of a 26,900 kg static load followed by an 8.05 km/h travelling speed and an 82° wheel angle. The results revealed that travelling and steering speeds were the key factors in causing high stresses and bolt tension forces. Compared to the five-piece rim, the two-piece rim decreased the maximum stresses by over 30% for both loading conditions; consequently the fatigue lives were increased by over two orders of magnitude. The maximum bolt forces for the two-piece rim were estimated to be 195,680 N and 111,360 N separately.  相似文献   

10.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s.  相似文献   

11.
A smooth steel roller was tested in an indoor soil bin. Subsoil forces and displacements were measured at depths of 50, 100, 150, and 200 mm. Roller operating conditions included roller travel speed, the vertical load, and number of passes. Three travel speeds, 1, 3, and 5 km h?1 and three vertical loads 20, 40, and 60 kN were tested. The draft needed to move the roller was also recorded. For multiple passes, subsoil forces were increased by 30% if vertical load increased by 50%; while the roller draft increased by 20%. For a single pass, no significant differences detected between the subsoil forces at speeds of 1 and 3 km h?1; when the roller traveled at 5 km h?1 with a vertical load of 60 kN, the subsoil force was approximately reduced by 30% compared to those at lower travel speeds. For both single and multiple passes, increasing travel speed did not significantly increase subsoil forces and displacement below 150-mm depth; however, the power required to drive the roller was significantly increased. Higher travel speed was more effective in creating larger subsoil displacement and subsoil forces within 100-mm from the soil surface. For similar effects below 100-mm, lower travel speed was found appropriate.  相似文献   

12.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

13.
An experimental apparatus has been developed in order to perform tests of primary fragmentation of solid fuels under severe heating conditions. The device is a modified heated strip reactor, capable to reach 2000 °C in less than 0.2 s. Particles are laid on the strip and pyrolysed under inert or moderately oxidizing conditions. The char particles and their fragments, generated upon pyrolysis, can be recovered and analysed to assess the fragmentation propensity of the fuel.Some preliminary experiments have been carried out on two biomass samples in order to assess the time-temperature history of particles in the experimental apparatus. In particular biomass particles of approximately 2–3 mm have been used. The temperature of the heated strip reactor in such preliminary tests was varied between 1000 and 1600 °C, while the strip nominal heating rate was kept at 104 °C/s and the holding time was set at the value of 10 s. A near infrared fast camera (38,000 frames/s) has been used to measure the temperature of the heated strip and of the particles during the tests. A heat up model was developed and validated against experimental results. The model was then used to estimate the temperature gradients across particles of biomass and of coal as well.Results show that the strip of the reactor reaches the set temperature in less than 0.2 s. When particles are laid on the strip, their bottom surface, which is in physical contact with the strip, immediately reaches the set temperature value. For 1 mm coal particles the upper surface can be considered at the same temperature as well. Under the most severe conditions tested (strip temperature of 1600 °C , biomass particles of 2 mm thickness) the temperature difference between the bottom and the upper face is 200 °C after 3 s and drops to 100 °C after 10 s. On the whole the experimental apparatus simulates uniform heating of the particles with reasonable approximation. In the next future the apparatus will be further upgraded to operate at pressures up to 20 bars.  相似文献   

14.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

15.
This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon. Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out.  相似文献   

16.
This paper derives a new three-dimensional (3-D) analytical solution for the indirect tensile tests standardized by ISRM (International Society for Rock Mechanics) for testing rocks, and by ASTM (American Society for Testing and Materials) for testing concretes. The present solution for solid circular cylinders of finite length can be considered as a 3-D counterpart of the classical two dimensional (2-D) solutions by Hertz in 1883 and by Hondros in 1959. The contacts between the two steel diametral loading platens and the curved surfaces of a cylindrical specimen of length H and diameter D are modeled as circular-to-circular Hertz contact and straight-to-circular Hertz contact for ISRM and ASTM standards respectively. The equilibrium equations of the linear elastic circular cylinder of finite length are first uncoupled by using displacement functions, which are then expressed in infinite series of some combinations of Bessel functions, hyperbolic functions, and trigonometric functions. The applied tractions are expanded in Fourier–Bessel series and boundary conditions are used to yield a system of simultaneous equations. For typical rock cylinders of 54 mm diameter subjected to ISRM indirect tensile tests, the contact width is in the order of 2 mm (or a contact angle of 4°) whereas for typical asphalt cylinders of 101.6 mm diameter subjected to ASTM indirect tensile tests the contact width is about 10 mm (or a contact angle of 12°). For such contact conditions, 50 terms in both Fourier and Fourier–Bessel series expansions are found sufficient in yielding converged solutions. The maximum hoop stress is always observed within the central portion on a circular section close to the flat end surfaces. The difference in the maximum hoop stress between the 2-D Hondros solution and the present 3-D solution increases with the aspect ratio H/D as well as Poisson’s ratio ν. When contact friction is neglected, the effect of loading platen stiffness on tensile stress in cylinders is found negligible. For the aspect ratio of H/D = 0.5 recommended by ISRM and ASTM, the error in tensile strength may be up to 15% for both typical rocks and asphalts, whereas for longer cylinders with H/D up to 2 the error ranges from 15% for highly compressible materials, and to 60% for nearly incompressible materials. The difference in compressive radial stress between the 2-D Hertz solution or 2-D Hondros solution and the present 3-D solution also increases with Poisson’s ratio and aspect ratio H/D. In summary, the 2-D solution, in general, underestimates the maximum tensile stress and cannot predict the location of the maximum hoop stress which typically locates close to the end surfaces of the cylinder.  相似文献   

17.
Experimental data from horizontal air–water slug flows were obtained in a test facility which was a 34 mm internal diameter, 10 m long Plexiglas pipe connected to the 90° branch arms from a T-junction. The test points were located on the flow pattern map in the proximity of the transition lines which separates different flow patterns. Capacitive probes with helical and concave plate sensors were used to quantify the dynamic liquid holdup in each branch. They were combined with Venturi nozzles + differential pressure transmitters in each outlet branch for measuring the two-phase mass flow rates. The dynamic characteristics of the slug flow splitting in a T-junction were studied from the acquired signals. Diaphragm straight-through type valves were used in the run and in the lateral branch arms to imitate equipments consuming the two-phase flow after the T-junction. This assembly can also be used as a gas–liquid separation system. The results showed different mechanisms acting on the slug flow division phenomenon. Liquid accumulation into the run branch, between the TJ and the control valve, caused more gas to come to the lateral branch.  相似文献   

18.
High-speed experiments were conducted to characterize the deformation and failure of Styrene Butadiene Rubber at impact rates. Dynamic tensile stress–strain curves of uniaxial strip specimens and force–extension curves of thin sheets were obtained from a Charpy tensile impact apparatus. Results from the uniaxial tension tests indicated that although the rubber became stiffer with increasing strain rates, the stress–strain curves remained virtually the same above 280 s−1. Above this critical strain rate, strength, fracture strain and toughness decreased with increasing strain rates. When strain rates were below 180 s−1, the initial modulus, tensile strength and breaking extension increased as the strain rate increased. Between strain rates of 180 and 280 s−1, the initial modulus and tensile strength increased with increasing strain rates but the extension at break decreased with increasing strain rates. A hyper-viscoelastic constitutive relation of integral form was used to describe the rate-dependent material behavior of the rubber. Two characteristic relaxation times, 5 ms and 0.25 ms, were needed to fit the proposed constitutive equation to the data. The proposed constitutive equation was implemented in ABAQUS Explicit via a user-defined subroutine and used to predict the dynamic response of the rubber sheets in the experiments. Numerical predictions for the transient deformation and failure of the rubber sheet were within 10% of experimental results.  相似文献   

19.
Finite element analysis, of regular Kelvin foam models with all the material in uniform-thickness faces, was used to predict the compressive impact response of low-density closed-cell polyethylene and polystyrene foams. Cell air compression was analysed, treating cells as surface-based fluid cavities. For a typical 1 mm cell size and 50 s?1 impact strain rate, the elastic buckling of cell faces, and pop-in shape inversion of some buckled square faces, caused a non-linear stress strain response before yield. Pairs of plastic hinges formed across hexagonal faces, then yield occurred when trios of faces concertinaed. The predicted compressive yield stresses were close to experimental data, for a range of foam densities. Air compression was the hardening mechanism for engineering strains <0.6, with face-to-face contact also contributing for strains >0.7. Predictions of lateral expansion and residual strains after impact were reasonable. There were no significant changes in the predicted behavior at a compressive strain rate of 500 s?1.  相似文献   

20.
Fatigue experiments of polycrystalline copper with different grain sizes and texture were conducted under tension–compression, torsion, and non-proportional loading. The grain sizes ranged from 10 μm to 2 mm. The stress–strain response was found to be a strong function of the grain size and texture. A plasticity-based critical plane multiaxial fatigue criterion was used to predict the fatigue lives of the polycrystalline copper. It was found that the criterion was able to correlate all the experimental results with one single set of material constants. This indicates that the fatigue failure of the material under consideration is dominated by the fatigue resistance of the grains with an insignificant influence of the grain boundaries on the fatigue of the polycrystalline material. It was found that the fatigue model with the material constants obtained from fatigue experiments can be applied to predict failure under monotonic torsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号