首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (solid + liquid) equilibria of {N-methyl-2-pyrrolidinone + 1-propanol, or 2-propanol, or 1-butanol, or 2-methyl-1-propanol, or 2-methyl-2-propanol, or 1-pentanol} has been measured by a dynamic method. The experimental results have been correlated using the Wilson, UNIQUAC ASM and two modified NRTL equations. The root-mean-square deviations of the solubility temperatures for all the calculated values vary from (0.5 to 2.1) K and depend on the particular equation used. The specific interaction between the carbonyl group of the NMP molecule and the alcohol has been discussed.  相似文献   

2.
《Fluid Phase Equilibria》2005,227(1):135-143
Solid–liquid equilibria (SLE), have been measured from 270 K to the boiling temperature of the solvent for 10 binary mixtures of N-methyl-2-pyrrolidinone, with ethers (dipropyl ether, dibutyl ether, dipentyl ether, methyl 1,1-dimethylethyl ether, methyl 1,1-dimethylpropyl ether, ethyl 1,1-dimethylpropyl ether, 1,4-dioxane, tetrahydrofuran, tetrahydropyran, 18-crown-6) using a dynamic method. The solubility of N-methyl-2-pyrrolidinone in ethers is lower than in alcohols and generally decreases with an increase of the number of carbon atoms of ether chain. The highest intermolecular solute–solvent interaction is observed for the cyclic ethers and for methyl 1,1-dimethylethyl ether.Experimental solubility results are compared with values calculated by means of the Wilson, UNIQUAC ASM and two NRTL equations utilizing parameters derived from SLE results. The existence of a solid–solid first-order phase transition in 18-crown-6 ether has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σT = 0.9 K with UNIQUAC ASM and two NRTL equations and 0.6 K with the Wilson equation.  相似文献   

3.
Isothermal vapor–liquid equilibrium (VLE) at 333.15 K and 353.15 K for four binary mixtures of benzene + toluene, benzene + N-methylformamide, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0 kPa to 101.3 kPa. The NRTL, UNIQUAC and Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave–Redlich–Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were also measured by using two vibrating tube densitometers. The Pxy diagram and the activity coefficient indicate that two mixtures of benzene + toluene and toluene + m-xylene were close to the ideal solution. However, two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The excess Gibbs energy in the benzene + toluene mixture is negative indicates that it is an exothermic system.  相似文献   

4.
5.
We report measurements of the speed of sound in mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. The measurements were made using a dual path pulse-echo apparatus operating at a frequency of 5 MHz. We have also measured the isobaric specific heat capacity of each mixture as a function of temperature at ambient pressure, by means of a Setaram DSC III microcalorimeter. The experimental results have been combined with literature data for the density of the same mixtures as a functions of temperature at ambient pressure to obtain the density, isobaric specific heat capacity, and other thermodynamic properties at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. Detailed comparisons with the literature data are presented.  相似文献   

6.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

7.
Enthalpies of mixing H have been measured for liquid binary mixtures of diisopropylether (DIPE)+benzene or cyclohexane and for liquid ternary mixtures diisopropylether+benzene+cyclohexane at 303.15 K and constant pressure using a C80 calorimeter. A Redlich-Kister type equation was used to correlate experimental results.  相似文献   

8.
9.
Densities of the isopropanolamine–water binary mixture system were measured over the whole range of compositions at temperatures from 283.15 to 353.15 K using an Anton Paar digital vibrating glass tube densimeter. The density of this system has been found an increasing function of the isopropanolamine composition. Excess molar volume data, calculated from the measured experimental densities, have been correlated using the Redlich–Kister equation. Parameters for the Redlich–Kister equation have been adjusted. Partial molar volumes at infinite dilution have been calculated for each component.  相似文献   

10.
The density, relative permittivity, viscosity and speed of sound at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K in the binary mixtures of nitromethane with 2-methoxyethanol and 2-butoxyethanol have been measured as a function of composition. From the experimental results, the excess molar volumes VE, excess Gibbs free energy of activation for viscous flow (ΔG1E), excess isentropic compressibility (κsE) and the deviations in the relative permittivity, viscosity, and speed of sound from a mole fraction average have been calculated. The viscosity data, at T = 298.15 K, were correlated with equations of Hind et al., Grunberg and Nissan, Frenkel, and McAllister. The results are discussed in terms of intermolecular interactions and structure of studied binary mixtures.  相似文献   

11.
The values of density (ρ), viscosity (η) and speed of sound (u) have been measured for binary liquid mixtures of γ-butyrolactone (GBL), δ-valerolactone (DVL), and ε-caprolactone (ECL) with N-methylacetamide (NMA) over the whole composition range at T = (303.15 to 318.15) K and atmospheric pressure. From these data, excess molar volume (VE), deviation in viscosity (Δη), and deviation in isentropic compressibility (Δκs), are calculated. The results are fitted to a Redlich–Kister type polynomial equation to derive binary coefficients and standard deviations.  相似文献   

12.
Ultrasonic velocity, density and viscosity of the ternary mixture of toluene + chloroform + cyclohexane, were measured at 303.15, 308.15, and 313.15 K. The thermodynamically parameters such as adiabatic compressibility (??), intermolecular free length (L f), free volume (V f), internal pressure (?? i ), acoustic impedance (Z), molar sound velocity (R), and molar compressibility (W) have been obtained from the experimental data for all the mixtures, with a view to investigate the exact nature of molecular interaction. Adiabatic compressibility and intermolecular free length decrease with increase in concentration and temperature. The other parameters show almost increasing concentration of solutes. These parameters have been further used to interpret the molecular interaction part of the solute and solvent in the mixtures.  相似文献   

13.
This work presents the measurements of the density, speed of sound, refractive index and enthalpy of binary mixtures containing {1,8-cineole + 1-alkanol (ethanol, 1-propanol, 1-butanol, and 1-pentanol)} at two temperatures (298.15 and 313.15) K and atmospheric pressure. The determination of excess molar volume, speed of sound deviation, refractive index deviation, molar refraction, molar refraction deviation, excess isentropic compressibility, and excess molar enthalpy are also given. Redlich–Kister equation was used to fit these derivate properties. The experimental data of the constituent binaries were analysed to discuss the nature and strengths of intermolecular interactions. Eventually some models, SAFT and PC-SAFT for density, Free Length and Collision Factor for speed of sound, Gladstone-Dale Arago-Biot for refractive index, and UNIFAC for excess molar enthalpy, among others, were successfully applied.  相似文献   

14.
15.
16.
Excess molar volumes (VE) and ultrasonic studies at T = 303.15 K and atmospheric pressure have been measured over the whole composition range for the binary mixtures of N-methyl-2-pyrrolidone (NMP) with ketones. The ketones studied in the present investigation include methyl ethyl ketone (MEK), diethylketone (DEK), methyl propyl ketone (MPK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The VE values were measured using a dilatometer and were negative over the entire mole fraction range for NMP with MEK, DEK, MPK, and MIBK and were positive for NMP with CH. The ultrasonic sound velocities for the above systems were measured with a single crystal interferometer at a frequency of 3 MHz. The sound velocity (u) results have been used to calculate isentropic compressibility (Ks) and deviation in isentropic compressibility (ΔKs) over the entire range of volume fraction. The sound velocity results have been predicted in terms of free length theory (FLT), collision factor theory (CFT), and Nomoto relation. The results reveal that all the theories gave a satisfactory estimate of the sound velocity. The deviation values of the isentropic compressibilities (ΔKs) were negative over the entire range of volume fraction in all the binary liquid mixtures except in the binary system NMP with CH, where we observed positive ΔKs values. The results are interpreted on possible molecular interactions between components.  相似文献   

17.
Molecular simulations of the (vapor + liquid) equilibria (VLE) for benzene, cyclohexane, and (benzene + hydrogen) and (cyclohexane + hydrogen) were carried out using the Gibbs-ensemble Monte Carlo method with configurational bias. The Buckingham exponential six (exp-6) potential was used for the site–site interactions with no binary interaction parameters; benzene and cyclohexane were described with six interaction sites, and hydrogen with a single site. Simulation results, density, pressure, and vaporization enthalpy for benzene and cyclohexane were in reasonable agreement with experimental data, but critical pressures obtained from extrapolation of the VLE results did not match the experimental values. For (benzene + hydrogen) and (cyclohexane + hydrogen) mixtures mole fractions from simulation were compared with experimental data, the results for liquid phase were in closer agreement with experiment than the results for vapor phase. For the mixtures, results from the PSRK equation of state (PSRK-EOS) predicted the mole fractions for both phases, also vapor densities from molecular simulation were in close agreement with PSRK-EOS. Additionally, the Henry’s law constant (KH) for hydrogen was calculated in separate simulations using test particle insertions, and qualitative agreement with values from experimental VLE data was obtained. For the (benzene + hydrogen) system KH results from PSRK-EOS were closer to experiment than the results from simulation, but, for the (cyclohexane + hydrogen) system results from both methods had similar deviations from experiment. The results for pure substance and mixtures indicate that the combination of the three molecular models used for benzene, cyclohexane, and hydrogen is valid for the simulation of the VLE of their mixtures.  相似文献   

18.
An acoustic study of the binary Alamine 308 (triisooctylamine)-benzene system was performed by measuring ultrasonic velocity, viscosity and density. Interactions in the liquid mixture were explained on the basis of excess non-linearity parameters and other relevant data, such as the degree of molecular interaction, molar sound velocity, etc. In addition, the experimental velocities were compared with theoretical estimates using various empirical relations, and the relative merits of the corresponding theories and relations were discussed in terms of percentage variations. The basic aim of this work was to assess the type of solute-solvent interaction between a nonpolar extractant (Alamine 308) and a nonpolar diluent (benzene). The text was submitted by the authors in English.  相似文献   

19.
Viscosities at T = (293.15, 298.15, and 303.15) K in the binary mixtures of ethyl tert-butyl ether with 2-ethoxyethanol, 2-(2-ethoxyethoxy)ethanol, and 2-[2-(2-ethoxyethoxy)ethoxy]ethanol have been measured over the entire range of mixture compositions. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG1E) have been calculated. The viscosity data were correlated with equations of Hind et al., Grunberg and Nissan, Auslaender, and McAllister. The results for Δln η and ΔG1E are discussed in terms of intermolecular interactions and structure of studied binary mixtures.  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - The interaction between binary mixtures of benzene/cyclohexane and toluene/cyclohexane into three activated carbons with different physical and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号