首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用有限元方法研究爆炸载荷下四边固支孔结构金属复合夹芯板的动力响应及吸能特性,给出了孔结构金属复合夹芯板的动力响应过程,得到夹芯板的变形模式,比较了孔结构金属复合夹芯板与非孔结构金属复合夹芯板的抗爆炸冲击性能,同时讨论了孔大小、间距、排布方式和面板质量分布等因素对孔结构金属复合夹芯板抗爆炸冲击性能的影响。研究结果表明,迎爆面外面板的孔设计使爆炸冲击波穿过孔洞直接作用在芯材上,增强了芯材的压缩,从而提高了夹芯板的能量吸收能力。同等面密度情况下,内外面板厚度比大于1的孔结构金属复合夹芯板变形挠度小于内外面板厚度比小于1的孔结构金属复合夹芯板。进一步研究发现,通过合理设计内外面板的质量分布,可以使孔结构金属复合夹芯板的抗爆炸冲击性能最优。  相似文献   

2.
轻质金属泡沫夹芯曲板的抗爆炸冲击响应研究   总被引:1,自引:0,他引:1  
夹芯结构具有高比强度、高比刚度和优异的吸能能力,已经被广泛应用于工程结构用来抵御高强度的爆炸冲击载荷。本文采用有限元数值模拟方法研究了爆炸载荷作用下四边固支夹芯曲板的动力响应。比较了同等质量下夹芯曲板、夹芯平板、实体曲板和实体平板四种结构的抗爆炸冲击性能,讨论了不同曲率和非对称因子对结构动力响应的影响,得到了使得夹芯曲板抗爆炸性能最佳的非对称因子。研究结果表明:夹芯曲板的抗爆炸冲击性能优于等质量的夹芯平板、实体曲板和实体平板结构,增大夹芯曲板的曲率能够提高结构的抗爆炸冲击性能。  相似文献   

3.
The problem of the dynamic response of flat rectangular sandwich panels subjected to underwater and in-air explosions is analyzed. The study is carried out in the framework of a geometrically non-linear model of sandwich structures featuring anisotropic laminated face sheets and an orthotropic core, in conjunction with the unsteady pressure generated by an explosion. Effects of the core and of the orthotropy of its material, as well as those related to the ply-thickness, directional material property and stacking sequence of face sheets, geometrical non-linearities and of the structural damping ratio are investigated, and their implications upon the dynamic response are highlighted. To the best of the authors’ knowledge, the specialized literature addressing the dynamic response of sandwich structures to underwater and in-air explosions is rather scanty. This work is likely to fill a gap in the specialized literature on this topic.  相似文献   

4.
The dynamic response of orthotropic sandwich composite plates impacted by time-dependent external blast pulses is studied by use of numerical techniques. The theory is based on classical sandwich plate theory including the large deformation effects, such as geometric non-linearities, in-plane stiffness and inertias, and shear deformation. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solutions are assumed for the space domain and substituted into the equations of motion. Then the Galerkin Method is used to obtain the non-linear differential equations in the time domain. The finite difference method is applied to solve the system of coupled non-linear equations. The results of theoretical analyses are obtained and compared with ANSYS results. Effects of the face sheet number, as well as those related to the ply-thickness, core thickness, geometrical non-linearities, and of the aspect ratio are investigated. Detailed analyses of the influence of different type of pressure pulses on dynamic response are carried out.  相似文献   

5.
Free vibration problems of lattice sandwich beams under several typical boundary conditions are investigated in the present paper. The lattice sandwich beam is transformed to an equivalent homogeneous three-layered sandwich beam. Unlike the traditional analytical model in which the rotation angles of the face sheets and the core are assumed the same, different rotation angles are considered in this paper to characterize the real response of sandwich beams. The analytical solutions of the natural frequencies for several typical boundary conditions are obtained. The effects of material properties and geometric parameters on the natural frequencies are also investigated.  相似文献   

6.
In this paper experimental and numerical results concerning the dynamic response of composite sandwich beams with curvature and debonds are reported. Sandwich beams made of carbon/epoxy face sheets and polyurethane foam core material were manufactured with four different radii of curvature and debonds between the top and bottom interface of face sheet and foam core. Dynamic response was obtained using the impulse frequency response technique under clamped-clamped boundary condition. Experimental results were compared with numerical finite element model results. A combined experimental and numerical FE approach was used to determine the material properties of the skin and foam core materials based on modal vibration and static flexure tests. Results indicate that the fundamental frequency increases with increasing curvature angle, however, for higher frequencies; the natural frequencies are not significantly affected. Also, it is found that face/core debond causes reduction of the natural frequencies due to stiffness degradation.  相似文献   

7.
建立了颗粒流子弹发射有限元模型,利用离散元和有限元的联合模拟方法,研究了高速颗粒流冲击负泊松比内凹蜂窝夹芯梁的动态响应及缓冲吸能机理。分析了加载冲量、冲击角、芯材强度以及颗粒流子弹与面板间的摩擦力等因素对夹芯梁动态响应的影响。研究结果表明:夹芯梁在正向颗粒流子弹冲击载荷作用下表现为局部凹陷和整体弯曲的耦合变形模式,面内设计芯材因胞壁弯曲呈现局部内凹的变形模式,面外设计芯材因胞壁屈曲呈现局部褶皱的变形模式。在等面密度的条件下,采用面外设计的硬芯夹芯梁面板的跨中最大挠度比采用面内设计的软芯夹芯梁小,但初始冲击力峰值和冲击力整体水平较高,冲击力响应时间较短。夹芯梁前后面板的跨中最大挠度与冲击载荷近似呈对数线性递增关系。与正向冲击相比,斜冲击下夹芯梁的变形模式具有非对称性,局部凹陷程度减小;在颗粒流子弹不同冲击角度作用下,夹芯梁前后面板的跨中最大挠度、初始冲击力峰值以及传递到夹芯梁的动能和动量占比随冲击角度的增大而减小,而颗粒流子弹与夹芯梁面板间的摩擦因数对夹芯梁的动态响应无显著影响。  相似文献   

8.
An analytical model is developed to classify the impulsive response of sandwich beams based on the relative time-scales of core compression and the bending/stretching response of the sandwich beam. It is shown that an overlap in time scales leads to a coupled response and to the possibility of an enhanced shock resistance. Four regimes of behaviour are defined: decoupled responses with the sandwich core densifying partially or completely, and coupled responses with partial or full core densification. These regimes are marked on maps with axes chosen from the sandwich beam transverse core strength, the sandwich beam aspect ratio and the level of blast impulse. In addition to predicting the time-scales involved in the response of the sandwich beam, the analytical model is used to estimate the back face deflection, the degree of core compression and the magnitude of the support reactions. The predictions of the analytical model are compared with finite element (FE) simulations of impulsively loaded sandwich beams comprising an anisotropic foam core and elastic, ideally plastic face-sheets. The analytical and numerical predictions are in good agreement up to the end of core compression. However, the analytical model under-predicts the peak back face deflection and over-predicts the support reactions, especially for sandwich beams with high strength cores. The FE calculations are employed to construct design charts to select the optimum transverse core strength that either minimises the back face deflections or support reactions for a given sandwich beam aspect ratio or blast impulse. Typically, the value of the transverse core strength that minimises the back face deflection also minimises the support reactions. However, the optimal core strength depends on the level of blast impulse, with higher strength cores required for greater blasts.  相似文献   

9.
In this paper, the nonlinear transient dynamic response of functionally graded material(FGM) sandwich doubly curved shell with homogenous isotropic material core and functionally graded face sheet is analyzed using a new displacement field on the basis of Reddy's third-order shear theory for the first time. The equivalent material properties for the FGM face sheet are assumed to obey the rule of simple power law function in the thickness direction.Based on Reddy'stheory of higher shear deformation, a new displacement field is developed by introducing the secant function into transverse displacement. Four coupled nonlinear differential equations are obtained by applying Hamilton's principle and Galerkin method. It is assumed that the FGM sandwich doubly curved shell is subjected to step loading, air-blast loading,triangular loading, and sinusoidal loading, respectively. On the basis of double-precision variablecoefficient ordinary differential equation solver, a new program code in FORTRAN software is developed to solve the nonlinear transient dynamics of the system. The influences of core thickness, volume fraction, core-to-face sheet thickness ratio, width-to-thickness ratio and blast type on the transient response of the shell are discussed in detail through numerical simulation.  相似文献   

10.
The mechanical response and fracture of metal sandwich panels subjected to multiple impulsive pressure loads (shocks) were investigated for panels with honeycomb and folded plate core constructions. The structural performance of panels with specific core configurations under multiple impulsive pressure loads is quantified by the maximum transverse deflection of the face sheets and the core crushing strain at mid-span of the panels. A limited set of simulations was carried out to find the optimum core density of a square honeycomb core sandwich panels under two shocks. The panels with a relative core density of 4%–5% are shown to have minimum face sheet deflection for the loading conditions considered here. This was consistent with the findings related to the sandwich panel response subjected to a single intense shock. Comparison of these results showed that optimized sandwich panels outperform solid plates under shock loading. An empirical method for prediction of the deflection and fracture of sandwich panels under two consecutive shocks – based on finding an effective peak over-pressure – was provided. Moreover, a limited number of simulations related to response and fracture of sandwich panels under multiple shocks with different material properties were performed to highlight the role of metal strength and ductility. In this set of simulations, square honeycomb sandwich panels made of four steels representing a relatively wide range of strength, strain hardening and ductility values were studied. For panels clamped at their edge, the observed failure mechanisms are core failure, top face failure and tearing at or close to the clamped edge. Failure diagrams for sandwich panels were constructed which reveal the fracture and failure mechanisms under various shock intensities for panels subjected to up to three consecutive shocks. The results complement previous studies on the behavior and fracture of these panels under high intensity dynamic loading and further highlights the potential of these panels for development of threat-resistant structural systems.  相似文献   

11.
The objective of this paper is to analytically study the dynamic response of a fully clamped metallic sandwich beam under impulsive loading. The membrane factor method is employed to derive the solutions for large deflections and time responses of the sandwich beam, in which the interaction of bending and stretching is considered. Moreover, tighter ‘bounds’ of the solutions are obtained. It is shown that the present solutions are in good agreements with the previous finite element results and lie in the bounds of the solutions. It is clear that core strength and membrane force induced by large deflections have significant effects on the dynamic response of sandwich beam with increasing the transient deflections. The present method is efficient and simple for the dynamic response analysis of large deflections of metallic sandwich structures.  相似文献   

12.
《力学快报》2019,9(6):391-396
An improved analytical model is developed to predict the dynamic response of clamped lightweight sandwich beams with cellular cores subjected to shock loading over the entire span.The clamped face sheets are simplified as a single-degree-of-freedom(SDOF) system, and the core is idealized using the rigid-perfectly-plastic-locking(RPPL) model. Reflection of incident shock wave is considered by incorporating the bending/stretching resistance of the front face sheet and compaction of the core. The model is validated with existing analytical predictions and FE simulation results, with good agreement achieved. Compared with existing analytical models, the proposed model exhibits superiority in two aspects: the deformation resistance of front face sheet during shock wave reflection is taken into account; the effect of pulse shape is considered. The practical application range of the proposed model is therefore wider.  相似文献   

13.
The mechanical behavior of a metallic sandwich sheet material composed of two flat face sheets and two bi-directionally corrugated core layers is analyzed in detail. The manufacturing of the sandwich material is simulated to obtain a detailed unit cell model which accounts for the non-uniform thickness distribution and residual stresses associated with the stamping of the core layers. Virtual experiments are performed by subjecting the unit cell model to various combinations of bi-axial in-plane loading including the special cases of uniaxial tension, uniaxial compression, equi-biaxial tension and shear. The results demonstrate that the core structure’s contribution to the in-plane load carrying capacity of the sandwich sheet material is similar to that of the face sheets. The numerical results are also used to identify the effective yield surface and hardening response of both the core layer and the face sheets. An anisotropic yield function with linear pressure dependency is proposed to approximate the equal-plastic work surfaces for the core structure and face sheets. Furthermore, a new two-surface model with non-linear interpolation based on plastic work density is presented to describe the observed combined isotropic-distortional hardening of the core structure.  相似文献   

14.
In this paper,based on ref[1],the axisymmetrical buckling of simply supportedcylindrical sandwich shells under the action of uniform axial load is solved by a rigorousmethod.The classical theory of shells is used for the two face sheets and the core isconsidered as a three-dimensional elastic body.A series of transcendental equations areobtained,from which the critical loads can be calculated by numerical methods.Numericalexamples are given to compare with the solutions of sandwich shell theories.  相似文献   

15.
This paper presents an analytical investigation on the buckling analysis of symmetric sandwich plates with functionally graded material (FGM) face sheets resting on an elastic foundation based on the first-order shear deformation plate theory (FSDT) and subjected to mechanical, thermal and thermo-mechanical loads. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. An analytical approach is used to reduce the governing equations of stability and then solved using an analytical solution which is named as power series Frobenius method for symmetric sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of the plate aspect ratio, side-to-thickness ratio, loading type, sandwich plate type, volume fraction index, elastic foundation coefficients and boundary conditions on the buckling response of FGM sandwich plates. This has not been done before and serves to fill the gap of knowledge in this area.  相似文献   

16.
通过开展对泡沫金属子弹撞击加载聚氯乙烯(polyvinyl chloride, PVC)夹芯板的实验,结合三维数字图像相关性(three dimensional digital image correlation, DIC-3D)技术,研究固支夹芯板在撞击加载条件下的动态响应,获得夹芯板受撞击及响应的变形过程,并结合图像分别分析夹芯板整体及三层结构的变形和失效模式;研究子弹冲量与背板最终变形之间的关系和相似冲量下等面密度不同芯层密度的夹芯结构的抗撞击性能。结果表明:夹芯板的破坏和失效主要集中在泡沫金属子弹直接作用区域,背板挠度由中间向固定端逐渐减小,子弹冲量与背板变形近似成线性关系。在等质量的条件下,降低芯层密度、增加芯层厚度可以有效降低背板的变形,实验结果对聚合物夹芯结构的工程优化设计具有一定的参考意义。  相似文献   

17.
This article reports an experimental study carried out with the aim of quantifying performance and failure modes of sandwich structures when subjected to impulsive blast loading. In particular, performance enhancement with respect to solid panels of equal mass per unit area is assessed. Likewise, the optimal distribution of the mass per unit area in the design of sandwich structures is investigated by comparing the behavior of sandwich structures with various distributions of face sheets thickness. By employing a previously developed FSI experiment, the study confirmed that usage of sandwich structures is beneficial and that performance enhancements, in terms of maximum panel deflection, as high as 68% are possible. The study also confirms theoretical and computational analyses suggesting that use of soft cores maximizes the benefits. Another interesting aspect revealed by this work is that the level of enhancement is highly related to the applied normalized impulse. The same distribution of mass per unit area between face sheets resulted in different normalized maximum deflection. A better performance enhancement was achieved at lower impulses. Here again, failure modes and their sequence seem to be the directly related to this finding. The work here reported clearly reveals a number of important features in the study of lightweight structures and points out to the synergies between structure geometry, materials, manufacturing methods, and threat levels as manifested by the strength of the impulse. Further theoretical and computational studies accounting for experimentally observed failure modes and its interdependence with the fabrication methods is needed to achieve additional predictive capabilities.  相似文献   

18.
The buckling and initial postbuckling behavior of clamped shallow spherical sandwich shells with dissimilar face sheets under a uniform pressure is studied. The numerical results show that the buckling and initial post-buckling behavior of clamped shallow spherical sandwich shells with dissimilar face sheets is similar to that of the corresponding homogeneous shell.  相似文献   

19.
Recent research has established the effectiveness of sandwich structures with metallic cellular cores for blast mitigation. The choice of core architecture can enhance sandwich performance, dissipating energy through plastic core compression and exploiting fluid–structure interaction effects to reduce the momentum imparted to the structure by the blast. In this paper we describe the first analysis of a novel sandwich core concept for blast mitigation: the stacked folded core. The core consists of an alternating stacked sequence of folded sheets in the Miura (double-corrugated) pattern, with the stack oriented such that the folding kinematics define the out-of plane compressive strength of the core. It offers a number of distinct characteristics compared to existing cellular cores. (i) The kinematics of collapse of the core by a distinctive folding mechanism give it unique mechanical properties, including strong anisotropy. (ii) The fold pattern and stacking arrangement is extremely versatile, offering exceptional freedom to tailor the mechanical properties of the core. This includes freedom to grade the core properties through progressive changes in the fold pattern. (iii) Continuous manufacturing processes have been established for the Miura folded sheets which make up the core. The design is therefore potentially more straightforward and economical to manufacture than other metallic cellular materials. In this first investigation of the stacked folded core, finite element analysis is used to investigate its characteristics under both quasi-static and dynamic loading. A dynamic analysis of an impulsively loaded sandwich beam with a stacked folded core reveals the versatility of the concept for blast mitigation. By altering the fold pattern alone, the durations of key phases of the dynamic sandwich response (core compression, beam bending) can be controlled. By altering both fold pattern and sheet thickness in the core, the same is achieved without altering the density of the core or the mass distribution of the sandwich beam.  相似文献   

20.
功能梯度夹层双曲壳结构广泛应用在航空航天、海洋工程等领域中,对于该类结构的动力学特性研究非常重要。本文以热环境下功能梯度夹层双曲壳为研究对象,在三阶剪切变形理论的基础上,考虑横向拉伸作用的影响提出了一种新的位移场,假设材料的物性参数与温度有关,且沿厚度方向表示为幂律函数。利用Hamilton原理得到简支边界条件下功能梯度夹层双曲壳三维振动系统动力学方程,利用Navier法求得两种不同夹层类型的系统固有频率。研究了几何物理参数和温度场对功能梯度夹层双曲壳自由振动固有频率的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号