共查询到19条相似文献,搜索用时 171 毫秒
1.
纳米催化材料的性能主要由粒子尺寸、形貌和界面决定,即活性位点的电子及几何结构.尺寸、形貌可控的纳米催化材料的合成及其反应性能的研究,即催化剂的构效关系,一直是催化领域的研究热点.氧化物负载的金属催化剂广泛应用于多相催化反应过程.基于氧化铈优异的氧化还原性能, Cu/CeO2催化剂在CO氧化、N2O消除、水气变换、甲醇合成等反应中表现出优异性能.其中,通过铜物种与氧化铈表面化学键合形成的金属-载体界面通常被认为是催化活性中心.铜物种和氧化铈的相互作用主要体现在氧化铈固定铜物种,而铜物种促进氧化铈的氧化还原能力,涉及Cu2+/Cu+/Cu0和Ce3+/Ce4+之间电子的传输和转移.Cu/CeO2催化剂活性位的原子结构与金属-载体相互作用程度密切相关.氧化铈形貌和铜负载量是决定界面电子和几何结构的重要因素.常见的纳米氧化铈形貌包括纳米粒子(多面体)、纳米棒和纳米立方体,可分别选择性暴露(111)、(110)和(100)... 相似文献
2.
氧化铈由于在氧化和还原气氛下具有快速Ce4+/Ce3+氧化还原循环作用,使其具有优异的储放氧能力,不仅可以分散和稳定金属粒子,还可在界面处与金属物种发生化学键合,并形成活性位点,因此已被广泛应用于多个催化反应体系,且表现出显著的形貌效应.通过对氧化铈形貌进行调控,使其暴露特定(111)、(110)和(100)晶面,已成为调节金属-氧化铈相互作用强度及金属物种电子、几何结构,提高催化性能的有效策略,但对其机制及活性位结构还没有清晰的认识.我们以氧化铈纳米粒子和纳米立方体为载体,其中氧化铈立方体平均尺寸为23 nm,主要暴露6个{100}晶面,边缘和截角暴露少量{110}及{111}晶面;球形氧化铈纳米粒子平均尺寸为11 nm,主要暴露{111}晶面;并进一步将2.0 wt%Pd物种分散在氧化铈立方体和球形纳米粒子上,通过扫描透射电子显微镜(STEM)和X射线光电子能谱(XPS)等研究了钯物种在氧化铈球形粒子和立方体上的原子结构和化学环境,进而分析了纳米结构氧化铈形貌对钯物种分散的影响.在球形氧化铈纳米粒子上主要形成了平均尺寸为2.0 nm的非晶态Pd纳米粒子以及极小的Pd物种,这主要是因为球形氧化铈纳米粒子上丰富的表面氧空位可通过Pd-CeO2强相互作用和Pd物种紧密键合.氧化铈立方体上的晶态Pd粒子尺寸为2.9 nm,金属与载体之间具有明显的界面,且Pd原子嵌入到氧化铈晶格中.同时,CO化学吸附测试也证明了氧化铈球形粒子上的钯分散度(70%)高于氧化铈立方体(52%).对于甲烷燃烧反应,主要涉及发生在金属粒子表面的PdO/Pd氧化还原循环,即Pd被O2氧化,PdO被CH4还原,富氧条件下决速步骤是PdO对CH4中C?H的活化,因此氧化铈立方体表面大尺寸的晶态Pd粒子被氧化后更容易被CH4还原,有利于PdO/Pd氧化还原循环,从而具有更高的活性和稳定性;然而在CO氧化反应中Pd/CeO2却呈现了相反的形貌效应,这是由于该反应遵循Mars-van Krevelen机理:CO吸附在金属Pd上,化学吸附的CO移动到钯-氧化铈界面,被氧化铈晶格氧氧化成CO2,产生的氧空位被表面氧补充,最后表面氧空位被气相氧补充;由于氧化铈球形粒子上的较小尺寸Pd具有更大的钯-氧化铈界面周长和更强的氧物种移动性,更易完成界面处的氧化还原循环,因此具有更高的CO氧化活性. 相似文献
3.
4.
CeO2是一种常见的催化材料,具有很高的实用及研究价值.人们在其形貌的可控合成以及催化活性的调节等方面进行了大量的研究,取得了很多成果.近年来,随着纳米材料生物应用研究的兴起,纳米氧化铈在生物抗氧化领域的应用受到了越来越多的关注.在纳米尺度下,由于表面氧缺陷的产生,氧化铈中部分cd4+被还原为Ce3+以稳定缺陷.此时材料中的Ce3+和Ce^4+能够可逆的转化,这一性质使得纳米CeO2能够催化分解生物体内的过量自由基,从而为治疗氧化应激类疾病提供了一种可能.本综述对纳米CeO2的生物抗氧化作用进行了总结,重点讨论了CeO2纳米颗粒的抗氧化机理以及影响其生物效应的关键因素,还介绍了纳米CeO2生物安全性相关的一些研究,并对其生物应用前景进行了展望. 相似文献
5.
纳米无机粒子/聚合物复合材料界面结构的研究 总被引:1,自引:0,他引:1
纳米粒子具有许多特性,聚合物中加入纳米粒子可以制备得到性能更加优异的复合材料,其中纳米粒子和聚合物基体间的界面对决定纳米复合材料的性能起着重要作用.本文综述了近些年来表征纳米无机颗粒/聚合物复合材料中界面结构的研究手段,如红外光谱(FTIR)、热重(TGA)、电子显微镜、小角中子散射(SANS)及小角X射线散射(SAXS)等,及界面结构与复合材料力学性能和热稳定性关系的研究进展.同时也介绍了纳米粒子对复合材料的渗透、光催化、阻燃、介电及导电性能的影响.最后对这一领域的研究进行了展望. 相似文献
6.
基于催化应用调控氧化铈纳米材料的形貌 总被引:1,自引:0,他引:1
催化剂的设计、合成和结构调控是获得优异性能的关键.传统的策略主要是尽量减小催化剂颗粒尺寸以增加活性中心的数目,即尺寸效应.近年来,材料科学的快速发展使得在纳米尺度上调变催化剂的尺寸和形貌成为可能,特别是通过形貌调控可暴露更多的高活性晶面,大幅度提高催化性能,即纳米催化中的形貌效应.因此,调节催化剂的尺寸与形貌可以单独或协同优化材料的性能.氧化铈作为催化剂的重要组分与结构、电子促进剂被广泛应用于多相催化剂体系.本文总结了近期氧化铈材料形貌可控合成的进展,包括主要的合成策略和表征方法; 进而分析了氧化铈和金-氧化铈催化材料的形貌效应,指出金-氧化铈之间独特的相互作用与载体形貌密切相关; 阐述了氧化铈纳米材料因暴露晶面的差异而获得不同催化性能的化学机制. 相似文献
7.
由于工业快速发展和人类活动加剧,作为最重要温室气体二氧化碳(CO2)的排放问题已经受到全球广泛关注,因此将CO2转化成甲醇等碳氢化合物不仅具有重要的科学意义,还具有广阔应用前景.Cu/Ce O2是重要的CO2加氢催化剂,但是由于Cu O-Ce O2界面存在状态在反应过程中较复杂,例如Cu氧化数可能存在0,+1和+2,Ce存在着+3和+4等氧化数;相应催化剂中氧化还原循环种类较多,存在着Cu2+/Cu+,Cu2+/Cu0,Cu+/Cu0和Ce4+/Ce3+等氧化还原对;Ce O2极易形成氧空穴;此外,Cu与Ce O2也易形成固溶体等,因此Cu/Ce O2的催化活性中心目前仍存在着争议.同时Cu/Ce O2催化剂价态和存在... 相似文献
8.
9.
氧化铈独特的氧化还原性能使其适合用作氧化反应中的催化剂或载体.氧化铈负载的过渡金属纳米粒子或孤立的单原子提供了金属-载体界面,从而降低了去除界面氧原子的能耗,提供了可以参与ManVanKulvian氧化过程的活性氧物种.CO氧化是测试氧化铈负载催化剂还原性的主要探针反应,并且它常见于在相对低温下消除CO的各种应用中.在过量H2中优先氧化CO(PROX)反应可控制CO浓度达到超低水平,以防止氢氧化电催化剂中毒.催化剂在CO氧化反应中的活性和在PROX反应中对CO和H2的选择性取决于金属物种的种类和分散性、CeO2的结构和化学性质以及催化剂的合成方法.在这篇综述中,我们总结了最近发表的关于CeO2负载的金属纳米粒子和单原子催化CO氧化和PROX反应的相关工作;以及不同的负载金属和同种金属在普通CeO2表面上的反应性.我们还总结了密度泛函理论计算中提出的最可能的反应机理;并且讨论了各种负载型金属在PROX反应中影响CO氧化选择性的因素. 相似文献
10.
11.
采用高温氮化法在Ti片基底上生长一层TiN0.3薄膜,进一步利用电化学沉积法在TiN0.3薄膜上生长CeO2,制备了TiN0.3/CeO2复合材料.分别用X射线衍射和扫描电镜研究了复合材料的晶体和形貌结构,用紫外-可见光谱探究了材料的光学吸收性能.结果表明,球状CeO2颗粒均匀地分布在TiN0.3表面;该复合光阳极除了TiN0.3对可见光的吸收外,外层的CeO2同时实现了对紫外光的吸收.光电催化性能研究发现,TiN0.3/CeO2复合光阳极能够显著提高TiN0.3或CeO2的光电流密度,同时增加光电流的稳定性.TiN0.3/CeO2独特的双层结构是其光电催化性能提高的主要原因.在TiN0.3与CeO2界面处异质结构的驱动下,CeO2层中的光生电子迁移至TiN0.3层,而相应的光生空穴在界面处被Ce3+所消耗,从而提高了CeO 2层中电子和空穴的分离效率,光电流密度也随之提高;同时,位于CeO2与电解液界面处的Ce3+作为水分子的吸附中心和反应活性中心,加快了界面处水的氧化反应,从而进一步促进了稳定光电流的产生.鉴于TiN0.3/CeO2光阳极材料优良的光电催化性能,其在太阳能光电催化领域具有潜在的应用,对于新型高效光电转化材料的设计与合成具有借鉴作用. 相似文献
12.
采用共沉淀法制备了系列Cu/CeO2-ZrO2水煤气变换(WGS)催化剂。用N2物理吸附、XRD和H2-TPR手段研究了ZrO2组分对催化剂的织构、物相、还原性能、热稳定性以及WGS反应活性的影响。结果表明。添加ZrO2组分均提高了催化剂的比表面积。且随ZrO2含量的增加,孔径逐渐向小孔集中,即大孔数量减少,小孔数量增加。最可几孔径移至1.9nm左右,并逐渐增强。ZrO2的加入能有效地抑制CeO2晶粒的长大,同时适量的ZrO2可使铜铈基催化剂在WGS反应过程中保持较高的Cu分散度。从而使其具有较高的活性和稳定性。当催化剂中ZrO2含量为10%。反应温度为200℃时,WGS应中CO的转化率达到73.7%。 相似文献
13.
在过去的25年,纳米金催化剂上 CO氧化反应得到广泛研究,但始终没有一致的结论。这是因为影响纳米金催化活性的因素很多,包括金的价态、载体的性质、氧空位、金属与载体之间的相互作用等,尤其是各影响因素之间相互牵制,增加了催化反应机理的研究难度。氧化铈载体表面氧缺陷的浓度较高,有利于活性金属组分在其表面的稳定和分散,因此氧化铈纳米晶负载的 Au催化剂受到广泛关注。此外,当 CeO2晶格中部分 Ce被化学性质不同的其它元素取代后,可以促进 CeO2晶格氧的活化,提高氧的储放能力,从而有利于催化反应进行。因此,本文采用水热法合成了组成均匀的 CeO2, CeZrOx和 CeZrLaOx三个载体,并通过沉淀-沉积法负载金。利用 X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、高分辨透射电镜(HRTEM)、X射线吸收精细结构(XAFS)和氢气程序升温还原(H2-TPR)等技术分析了催化剂的物相结构、表面性质、形貌以及金纳米颗粒的大小和价态等性质,并结合其在 CO氧化反应中催化性能的差异,探讨影响金催化剂活性的关键因素。 XRD, TEM, HRTEM和 XAFS结果表明,三个载体上所得金纳米颗粒的平均尺寸都在2–4 nm,且分散较好; XPS结果表明,影响催化剂活性的关键因素不是金的价态,而是载体表面的活性氧物种。从Raman结果可知,掺杂后的氧化铈载体上氧空位浓度明显增加,因而催化剂活性都有所提高。 H2-TPR进一步探讨了三个载体以及负载金后其氧化还原能力的变化,结果表明,金和载体之间的相互作用可以增强载体的氧化还原性能以及表面氧空位浓度,进一步提高了催化剂活性,而负载金催化剂氧化还原性能的变化与载体的组成密切相关。由于锆的掺杂可使金与载体之间相互作用减弱,而镧则增强了二者间相互作用,因此 Au/CeZrLaOx催化剂上锆和镧的协同掺杂作用使其表面活性氧物种浓度最高,低温时表现出最高的催化活性。 相似文献
14.
自Haruta和Hutchings发现负载的纳米金催化剂的催化活性后,负载型金催化剂一直是非均相催化的研究重点之一.近年来,单原子催化剂因其优异的活性、选择性,超高的原子利用效率,引起了科学家们的广泛关注.越来越多的单原子金催化剂被成功制备,并被证实具有很好的催化活性.水,作为环境中最常见的物质,在实际的催化体系中往往难以避免,即使在超高真空环境中也会有痕量的水气存在.水的解离不仅是水煤气反应的重要步骤之一,而且对别的反应也有一定的促进作用.尽管水和纳米团簇催化剂之间的研究已经颇有成效,但水和单原子金催化剂之间的作用还不是非常清晰.因此,我们采用密度泛函理论从原子尺度研究了水和Au1/CeO2单原子催化剂的相互作用.我们首先研究了水在完美CeO2表面和含有一个氧空位的CeO2–x表面上的解离过程,研究发现分子态的水和解离态的水在完美CeO2表面可以共存,而一旦在表面形成氧空位后,由于较低的能垒和极大的放热,解离态的水将占据绝对优势.接下来探索了水在完美Au1/CeO2表面和含有一个氧空位的Au1/CeO2–x表面上的解离过程,发现结论恰好和CeO2表面相反.水的解离过程在完美的Au1/CeO2表面几乎是一个无能垒的过程,并且解离会放出大量的热量.而一旦在表面形成氧空位后,单原子Au的轨道处于满占状态,无法提供水的吸附位点.水的解离过程在Ce位点进行,分子吸附能与解离吸附能相当,分子态与解离态共存.为了进一步理解单原子金在水的解离过程中起到的作用,我们分析了水和Au1/CeO2之间的电子相互作用.研究结果表明,单原子金不仅为水的吸附提供了位点,金的5d轨道和水的2p轨道之间的相互作用还有效减弱了水中氧氢键的强度,使水的解离更容易进行.由此可见,在涉及到水解离的反应中,以Au1/CeO2为代表的单原子催化剂有望带来新的突破.最后,我们还测试了范德华力对研究体系的影响.研究发现尽管范德华力会使吸附能的绝对值增加,但是并不影响我们得到的结论. 相似文献
15.
总结了拉曼光谱表征CeO2基固溶体中氧缺位的研究成果,评述了氧缺位的生成和影响氧缺位浓度观察值的因素,并提出了亟待解决的问题.CeO2基固溶体的拉曼谱图中出现三个重要的特征拉曼峰(465、560、600cm-1),一般分别归属于CeO2的F2g振动模式、氧缺位和MO8型缺陷物种.研究发现氧缺位的产生与掺杂金属离子价态有关,而MO8型缺陷物种的产生与掺杂金属离子半径有关.CeO2基固溶体中氧缺位浓度观察值(AD/AF2g)与样品吸光度和表面富集有关.原位拉曼光谱研究表明:气氛及温度影响CeO2基固溶体的吸光度变化,从而影响拉曼光谱采样深度,导致氧缺位浓度观察值的变化. 相似文献
16.
CuO/CeO2和CuO/Al2O3催化剂的催化性能 总被引:13,自引:0,他引:13
本文以CO氧化为模式反应考察了CeO2和Al2O3负载氧化铜催化剂的氧化活性,运用XRD和TPR技术研究了催化剂的还原性能和物相结构,结果表明:载体性质对负载CuO催化剂的CO氧化活性有很大影响,CuO/CeO2催化剂活性明显高于CuO/Al2O3催化剂.催化剂的还原特性随载体不同而不同.同时发现,热处理对催化剂铜物种的存在形式,晶粒大小、还原特性及其催化活性有明显影响,CuO/Al2O3催化剂活性下降的主要因素是生成了活性较低的CuAl2O4相,而CuO/CeO2催化剂活性下降是由于CuO和CeO2发生烧结,晶粒变大 相似文献
17.
Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion 下载免费PDF全文
CeO2 was synthesized by sol-gel, hydrothermal, nitrate thermal decomposition methods, respectively, and used as support to prepare CuO/CeO2
catalysts. According to characterization and reaction results, preparation method of CeO2 had a great influence on the physicochemical
properties and activities of CuO/CeO2 catalysts. CuO with high dispersion and strong interaction with CeO2 was highly active in methane
combustion, while CuO particles less associated with CeO2 showed less activity. The CuO catalyst supported on CeO2 which was prepared via
nitrate thermal decomposition method showed the largest area, the smallest particle size, the highest dispersion of copper species and strong
support metal interactions. Therefore, it presented the highest redox ability and activity for methane combustion. Activities of the catalysts
with different copper content kept increasing until 5% Cu loading and from then on kept constant. Moreover, methane conversion decreased
as methane space velocities increased on CuO/CeO2 catalyst. Addition of CO2 to the feed did not produce a significant effect on the catalytic
activity, but the presence of H2O provoked a remarkable decrease on the activity of CuO/CeO2 catalyst. 相似文献
18.
19.
超细CuO/ZnO/TiO2-SiO2的表征和CO2加氢合成甲醇性能研究 总被引:7,自引:3,他引:7
用溶胶-凝胶法制备了铜、锌质量分数不同的超细Cu/ZnO/TiO2-SiO2催化剂。通过BET、TPR、XRD及FT-IR等方法对催化剂前驱体CuO/ZnO/TiO2-SiO2的物化性能进行表征。用固定床连续流动微反装置,考察催化剂CO2加氢合成甲醇的催化性能。研究结果表明,溶胶-凝胶法制备的CuO/ZnO/TiO2-SiO2催化剂比表面较大(240 m2/g~590 m2/g),孔径分布单一,晶相组成为CuO。随着铜、锌质量分数的增大,催化剂的比表面积减小,最可几孔径增大; CuO微晶结晶度增大,同时微晶尺寸逐渐增大至20 nm。催化剂具有较高的反应活性和选择性,当氧化铜、氧化锌质量分数各为25%时,在260 ℃,2 500 h-1,CO2∶H2=1∶3(mol比),2.0 MPa的反应条件下,甲醇时空收率为0.126g/(h·g)。 相似文献