首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiO2/Si/SiO2 single quantum wells (QWs) were prepared under ultrahigh vacuum conditions in order to study their structural, chemical and photoelectrical properties with respect to a possible application in photovoltaic devices. Amorphous silicon (a-Si) layers (thickness <10 nm) were deposited onto quartz glass (SiO2) substrates and subsequently oxidized with neutral atomic oxygen at moderate temperatures of 600 °C. Under these conditions, the formation of suboxides is mostly suppressed and abrupt Si/SiO2 interfaces are obtained. Crystallization of a-Si QWs requires temperatures as high as 1000 °C resulting in a nanocrystalline structure with a small amorphous fraction. The spectral dependence of the internal quantum efficiency of photoconductivity correlates well with the nanocrystalline structure and yields mobility lifetime products of <10?7 cm2 V?1. This rather low value points towards a strong influence of Si/SiO2 interface states on the carrier mobility and the carrier lifetime in Si QWs. Electronic passivation of interface states by subsequent hydrogen treatment in forming gas enhances the internal quantum efficiency by nearly one order of magnitude.  相似文献   

2.
Si quantum dots/SiO2 multilayers were prepared by annealing a-Si:H/SiO2 stacked structures at 1100 °C . Photo- and electro-luminescence band around 750 nm can be observed from Si QDs/SiO2 multilayers due to the recombination of electron-hole pairs in Si QDs/SiO2 interfaces. The electro-luminescence intensity was obviously enhanced after post hydrogen annealing at 400 °C. Electron spin resonance measurements were used to characterize the change of the defect states after hydrogen annealing. It is found that there exists a-centers (g value = 2.006), which is related to the Si dangling bonds in Si QDs in our samples. Hydrogen annealing can significantly reduce non-luminescent a-centers and enhance the electro-luminescence intensity consequently.  相似文献   

3.
Two different growth mechanisms are compared for the fabrication of Si/SiO2 nanostructures on crystalline silicon (c-Si) to be used as hetero-emitter in high-efficiency solar cells: (1) The decomposition of substoichiometric amorphous SiOx (a-SiOx) films with 0 < x < 1.3 and (2) the dewetting of thin amorphous silicon (a-Si) layers.The grown layers are investigated with regard to their structural properties, their passivation quality for c-Si wafer substrates and their electrical properties in order to evaluate their suitability as a nanodot hetero-emitter. While by layer decomposition, no passivating nanodots could be formed, the dewetting process allows fabricating nanodot passivation layers at temperatures as low as 600 °C. The series resistance through Ag/[Si-nanodots in SiO2]/c-Si/Al structures for dewetting is similar to nanostructured silicon rich SiOx films. Still, a nanodot hetero-emitter which exhibits both a satisfying passivation of the substrate and induces a high band bending by doping at the same time could not be fabricated yet.  相似文献   

4.
Er3+-doped glass-ceramic SiO2–ZrO2 optical planar waveguides were prepared by the sol–gel route using different SiO2:ZrO2 molar ratios (90:10, 85:15, 80:20 and 75:25). Multilayered films were deposited onto Si(1 0 0) substrates by the dip-coating technique. Structural characterization was performed using vibrational spectroscopy and X-ray diffraction. Some optical properties, densification and surface morphology of these films were investigated as a function of the SiO2:ZrO2 ratio, annealing temperature and time. Optical properties such as refractive index, number of propagating modes and attenuation coefficient were measured at 632.8, 543.5 and 1550 nm, by the prism coupling technique. Uniform surface morphology with roughness less than 0.5 nm. Low losses, less than 0.9 dB/cm at 612.8 nm in the TE0 mode, were measured for the planar waveguides containing up to 25 mol% zirconium oxide. Luminescence of Er3+ in the near infrared was observed for the active nanocomposite.  相似文献   

5.
X-ray photoelectron spectroscopy (XPS) has been used to examine the atomic content of implanted SiO2/Si layers. In particular, an XPS analysis permits to identify elemental Ge and Si, as well as GeO2 precipitations in SiO2 matrices. The XPS results reveal valuable information not only about the formation mechanism of Ge and Si nanoclusters but also on the annealing kinetics of SiO2 whose properties are known to be significantly altered during the process of ion implantation and subsequent annealing. The composition of ion beam-modified SiO2 layers strongly depends on the annealing temperature. With respect to germanium implanted samples a possibility of Ge nanocrystals formation appears at high (above 1000 °C) annealing temperatures. It has been shown that an intermediate step in the Ge oxide formation is necessary for the creation of Ge nanoclusters. Additionally, the presence of a subsurface zone GeOx (about 100 nm thick) predicted in kinetic three-dimensional lattice simulations has been confirmed. In the case of Si+ implanted samples substoichiometric silicon oxide lines in the XPS spectra of a SiO2 layer for all samples have been observed. No evidence of a line connected to the Si–Si bonding has been observed even at the highest annealing temperatures, at which only stoichiometric SiO2 has been detected.  相似文献   

6.
Silicon nanocrystals (Si-NCs) with different sizes embedded in SiO2 matrix were synthesized by phase separation and thermal crystallization of SiOx/SiO2 supperlattice approach. The optical constants and band gap expansion of Si-NCs have been investigated by spectroscopic ellipsometry, based on the Maxwell–Garnett effective medium approximation and the Forouhi–Bloomer optical dispersion model. Similar spectra shapes but smaller values of Si-NCs optical constants with respect to bulk crystalline Si is observed. With the size of Si-NCs decreasing from 6 nm to 2 nm, the band gap increases from 1.64 eV to 2.56 eV. The band gap expansion, as compared to bulk crystalline Si, which agrees with the prediction of first-principles calculations based on quantum confinement effect, is presented in this paper.  相似文献   

7.
Tb3 + single-doped SiO2 (SiO2:Tb3 +) and Tb3 +, Ag co-doped SiO2 (SiO2:Tb3 +–Ag) nanostructured luminescent materials were prepared by a modified Stöber method. Their microstructure and optical property were investigated using scanning electron microscopy, ultraviolet visible absorption and photoluminescence spectrophotometry. Results show that the samples are composed of well-dispersed near-spherical particles with a diameter about 50 nm, the highest fluorescence intensity is obtained when the doping concentration of Tb3 + is 4.86 mol%, the corresponding internal quantum efficiency is 13.6% and the external quantum efficiency is 8.2%. The experimental results indicate that Ag nanoparticles can greatly enhance the light absorption at 226 nm and the light emission at 543 nm of SiO2:Tb3 +–Ag, and the fluorescence lifetime reduces with increasing Ag concentration in SiO2:Tb3 +–Ag. Additionally, the present results indicate that fluorescence enhancement is attributed to the local field enhancement and the increased radiative decay rates induced by Ag nanoparticles.  相似文献   

8.
T.V. Torchynska 《Journal of Non》2008,354(19-25):2296-2299
Photoluminescence of Si NCs with the size (10–300 nm) bigger than the exciton Bohr radius in the bulk Si crystals (4.8 nm) has been considered. Photoluminescence in such NC systems is analyzed from the point of view of new concept based on the effect of hot carrier ballistic transport in excitation of suboxide defect-related photoluminescence at the Si/SiOx interface. The dependence of the 1.70 eV PL band integrated intensity on Si NC sizes was numerically calculated on the base of the hot carrier ballistic PL model. The well correlation between calculated and experimental results has been obtained for Si NCs with the size from the 30–150 nm range.  相似文献   

9.
《Journal of Non》2006,352(28-29):3134-3139
X-ray photoelectron spectra (XPS) of thin SiO2 layers grown by pulsed Nd:YAG laser at a substrate temperature of 748 K are presented. The peak decomposition technique combined with depth profiling is employed to identify the composition and chemical states of the film structure. It is established that the oxide is non-stoichiometric, and contains all oxidation states of Si in different amounts throughout the film. The interface Si/laser-grown oxide is not abrupt, and the coexistence of Si2O3 and Si2O suboxides in a relatively wide interfacial region is found. It is concluded that post-oxidation annealing is necessary in order to improve the microstructure of both oxide and near interface region.  相似文献   

10.
L. Korte  M. Schmidt 《Journal of Non》2008,354(19-25):2138-2143
A variant of photoelectron spectroscopy with near-UV light excitation was established and applied to an n-type doping series of ultra-thin a-Si:H layers (layer thickness ~10 nm). Using this technique, the position of the surface Fermi level EFs is obtained and the density of recombination active defect states in the a-Si:H band gap down to ~1015 states/cm3 can be detected. Defect densities are generally about one order of magnitude higher than in the bulk of thicker (several 100 nm) layers, and the minimum achievable distance of EFs from the conduction band is ~360 mV for doping with 104 ppm PH3. The optimum doping for the fabrication of solar cells is almost one order of magnitude lower. This discrepancy may be explained by enhanced recombination at the a-Si:H/c-Si interface at high doping levels, and in addition by an efficient recombination pathway where charge carriers tunnel from c-Si via a-Si:H band tail states into the a-Si:H and subsequently recombine at dangling bond states.  相似文献   

11.
《Journal of Non》2007,353(5-7):703-707
The change of optical and electrical properties of SiO2 layer on Si single crystal exposed to YAG:Nd laser radiation has been found experimentally. The second harmonic of YAG:Nd laser was used as a source of light. Before irradiation the SiO2 layer with thickness 0.75 μm had red color in reflecting light due to the interference. After irradiation with the laser with intensity of more than 3.5 MW/cm2 red color changed to yellow. However, samples with thickness 0.21 μm did not change color after irradiation. We explain such peculiarities of optical properties by change of optical path. Capacity (C) measurements of SiO2 layer with thickness 0.21 μm by the method of capacity–voltage characteristics have shown a decrease of C to more than 40%. It is possible if real part of dielectric permittivity (K) decreases or thickness of the SiO2 layer increases. Atomic force microscope and profilemeter measurements did not show any change of surface roughness for the SiO2 layer with thickness 0.21 μm. We suppose that after irradiation of the SiO2 layer decrease of K takes place due to the formation of nanopores in SiO2 or/and generation of the charged point defect at the interface of Si–SiO2. Particularly the first is in agreement with measurements of micro hardness and capillary effect.  相似文献   

12.
We have studied the in-situ boron doping of high Ge content Si1?xGex layers (x=0.3, 0.4 and 0.5). These layers have been grown at low pressure (20 Torr) and low temperature (600–650 °C) with a heavily chlorinated chemistry on blanket Si(0 0 1) substrates. Such a chemistry yields a full selectivity versus SiO2 (isolation) and Si3N4 (sidewall spacers) on patterned wafers with gate stacks. We have quantified the impact of the diborane flow on the SiGe layer crystalline quality, its resistivity, the SiGe:B growth rate and the apparent Ge concentration. Resistivity values lower than 1  cm are easily achieved, all the more so for high Ge content layers. The SiGe growth rate increases and the apparent Ge concentration (from X-ray diffraction) decreases as the diborane flow increases. B atoms (much smaller than Si or Ge) indeed partially compensate the compressive strain in the SiGe:B layers. We have also probed the in-situ boron and phosphorus doping of Si at 750 °C, 20 Torr with a heavily chlorinated chemistry. The B ions concentration increases linearly with the diborane flow, then saturates at a value close to 4×1019 cm?3. By contrast, the P ions concentration increases sub-linearly with the phosphine flow, with a maximum value close to 9×1018 cm?3. Adding diborane (phosphine) to the gaseous mixture leads to a sharp increase (decrease) of the Si:B (the Si:P) growth rates, which has to be taken into account in device layers. All the know-how acquired will be most handy for the formation of in-situ doped recessed or raised sources and drains in metal-oxide semiconductor devices.  相似文献   

13.
《Journal of Non》2006,352(9-20):1152-1155
This paper presents the results of photoluminescence, its temperature dependence and Raman scattering investigations on magnetron co-sputtered silicon oxide films with (or without) embedded Si (or Ge) nanocrystallites. It is shown the oxide related defect origin of the visible PL centers peaked at 1.7, 2.06 and 2.30 eV. The infrared PL band centered at 1.44–1.58 eV in Si–SiOx, system has been analyzed within a quantum confinement PL model. Comparative PL investigation of Ge–SiOx system has confirmed that high energy visible PL bands (1.60–1.70 and 2.30 eV) are connected with oxide related defects in SiOx. The PL band in the spectral range of 0.75–0.85 eV in Ge–SiOx system is attributed to exciton recombination inside of Ge NCs.  相似文献   

14.
《Journal of Crystal Growth》2006,286(2):235-239
The characteristics of Si-doped and undoped GaN/Si(1 1 1) heteroepitaxy with composite buffer layer (CBL) and superlattice are compared and discussed. While as-grown Si-doped GaN/Si(1 1 1) heteroepitaxy shows lower quality compared to undoped GaN, crack-free n-type and undoped GaN with the thickness of 1200 nm were obtained by metalorganic chemical vapor deposition (MOCVD). In order to achieve the crack-free GaN on Si(1 1 1), we have introduced the scheme of multiple buffer layers; composite buffer layer of Al0.2Ga0.8N/AlN and superlattice of Al0.2Ga0.8N/GaN on 2-in. Si(1 1 1) substrate, simultaneously. The FWHM values of the double-crystal X-ray diffractometry (DCXRD) rocking curves were 823 arcsec and 745 arcsec for n-GaN and undoped GaN/Si(1 1 1) heteroepitaxy, respectively. The average dislocation density on GaN surface was measured as 3.85×109 and 1.32×109 cm−2 for n-GaN and undoped GaN epitaxy by 2-D images of atomic force microscopy (AFM). Point analysis of photoluminescence (PL) spectra was performed for evaluating the optical properties of the GaN epitaxy. We also implemented PL mapping, which showed the distribution of edge emission peaks onto the 2 inch whole Si(1 1 1) wafers. The average FWHMs of the band edge emission peak was 367.1 and 367.0 nm related with 3.377 and 3.378 eV, respectively, using 325 nm He-Cd laser as an excitation source under room temperature.  相似文献   

15.
《Journal of Non》2007,353(24-25):2363-2366
Glasses of the xGd2O3 · (100  x)[B2O3 · Bi2O3] system with 0.5  x  10 mol% were studied by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Data obtained show that for low gadolinium oxide contents of the samples (x  3 mol%) the Gd3+ ions are randomly distributed in the host glass matrix and are present as isolated and dipole–dipole coupled species. For higher gadolinium oxide contents of the samples (x > 3 mol%) the Gd3+ ions appear as both isolated and antiferromagnetically coupled species. The EPR spectra of the glasses reveal resonance sites with an unexpected high crystalline field in addition to the ‘U’ spectrum, typical for Gd3+ ions in disordered systems. This absorption line is due to Gd3+ ions that replace Bi3+ ions from the host glass matrix and could play the network unconventional former role in the studied glasses.  相似文献   

16.
《Journal of Non》2005,351(52-54):3834-3838
Scaling-down the oxide thickness induces weakness influencing its intrinsic reliability. Even unbiased, swift heavy ions irradiated devices clearly show oxide alteration. Despite numerous studies on oxide reliability, some results are not yet well understood. In this paper, we focus on the structural degradation induced in thin silicon oxide films on silicon substrate after a 210 MeV low fluence gold ion irradiation and on its effect on the reliability of MOS devices in radiation-harsh environments. We describe such degradation as a local silicon growth in the SiO2 layer, near the SiO2–Si interface. Experimental results can bring some emergent elements to explain earlier works in the field of oxide reliability. Based on the specific behavior of heavy ion-irradiated oxides, this paper aims to link together thermal spike model, heavy ion-induced nanodots and reliability of ultrathin gate oxides. We propose to evaluate the possible sensitivity of some high-k materials in radiation-harsh environments with respect to their thermal conductivity property.  相似文献   

17.
《Journal of Crystal Growth》2006,286(2):376-383
Bismuth silicate and bismuth titanate thin films were deposited by atomic layer deposition (ALD). A novel approach with pulsing of two Bi-precursors was studied to control the Si/Bi atomic ratio in bismuth silicate thin films. The crystallization of compounds formed in the Bi2O3–SiO2 and Bi2O3–TiO2 systems was investigated. Control of the stoichiometry of Bi–Si–O thin films was studied when deposited on Si(1 0 0) and crystallization was studied for films on sapphire and MgO-, ZrO2- and YSZ-buffered Si(1 0 0). The Bi–Ti–O thin films were deposited on Si(1 0 0) substrate. Both Bi–Si–O and Bi–Ti–O thin films were amorphous after deposition. Highly a-axis oriented Bi2SiO5 thin films were obtained when the Bi–Si–O thin films deposited on MgO-buffered Si(1 0 0) were annealed at 800 °C in nitrogen. The full-width half-maximum values for 200 peak were also studied. An excess of bismuth was found to improve the crystallization of Bi–Ti–O thin films and the best crystallinity was observed with Ti/Bi atomic ratio of 0.28 for films annealed at nitrogen at 1000 °C. Roughness of the thin films as well as the concentration depth distribution were also examined.  相似文献   

18.
The growth and characterization of zirconium oxide (ZrO2) thin films prepared by thermal oxidation of a deposited Zr metal layer on SiO2/Si were investigated. Uniform ZrO2 thin film with smooth surface morphology was obtained. The thermal ZrO2 films showed a polycrystalline structure. The dielectric constant of the ZrO2 film has been shown to be 23, and the equivalent oxide thickness (EOT) of the ZrO2 stacked oxide is in the range of 3.38–5.43 nm. MOS capacitors with ZrO2 dielectric stack show extremely low leakage current density, less than 10?6 A/cm2 at ?4 V. Consequently, using this method, high-quality ZrO2 films could be fabricated at oxidation temperature as low as 600 °C.  相似文献   

19.
《Journal of Non》2007,353(18-21):1966-1969
The local structures around silicon and phosphorous atoms in R2O–SiO2–P2O5 (R = Li, Na and K) glasses have been investigated using Si and P K-edge XAFS spectroscopy by transmission mode at BL-4 and BL-3 at the synchrotron facility in Ritsumeikan University. As a result of XANES and EXAFS analyzes, six-coordinated silicon atoms were observed in the glasses. The fraction of six-coordinated silicon atom changed with increasing of the concentration of alkali oxide and P2O5. For the change of concentration of alkali oxide, it takes maximum values which are 60% in Li2O, 90% in Na2O and 85% in K2O system at 20 mol% alkali oxide. It gradually increased up for the increase of the concentration of P2O5 to 55% in Li2O, 80% in Na2O and 90% in K2O system. The Si–O inter-atomic distance in the glasses changes from 1.63 to 1.79 Å with increasing the fraction of six-coordinated silicon atom. On the other hand, it was not observed the local structural change around the phosphorous atom.  相似文献   

20.
In this work, refractive index and extinction coefficient spectra of germanium nanoclusters – rich SiO2 layers have been determined using variable angle spectroscopic ellipsometry (VASE) in the 250–1000 nm range. The samples were produced by Ge+ ion implantation into SiO2 layers on Si substrates and subsequent annealing at temperatures from 700 to 1100 °C. It is known from previous investigations of similar samples that the Ge nanoclusterization process starts already at 800 °C and spherical Ge nanocrystallites 5–8 nm in diameter are observed in the SiO2 layers after annealing for 1 h at even higher temperatures of 1000–1100 °C. Rutherford backscattering spectrometry (RBS) was employed to measure the Ge atom concentration depth profiles in the studied samples. The RBS results helped us choose realistic models for the VASE analysis which were necessary for a proper interpretation of the VASE data. It has been found that the refraction index value for the SiO2/Si layer increases after Ge implantation. This effect can be explained by a defect-dependent compaction of ion-bombarded layers. A band’s tail in the extinction coefficient spectra for all the samples is observed which originates from a strong ultraviolet absorption band at 6.8 eV due to a Germanium Oxygen-Deficiency Center (GeODC) and/or a Ge-E’center in SiO2. The annealing process results in the emergence of weaker extinction coefficient bands in the 400–600 nm region, associated with direct band-to-band transitions in Ge nanostructures. Transformation of these bands, including their blue-shift with the increasing annealing temperature could be explained via a quantum-confinement mechanism, by size and structural changes in Ge nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号