首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic properties of Mn2V2O7 single crystals are investigated by means of magnetic susceptibility, magnetization, and heat capacity measurements. A structural phase transition of the α-β forms is clearly observed at the temperature range of 200-250 K and an antiferromagnetic ordering with magnetic anisotropy is observed below 20 K. A spin-flop transition is observed with magnetic field applied along the [110] axis of β-Mn2V2O7, of which corresponds to the [001] axis of α-Mn2V2O7, suggesting that the spins of Mn2+ ions locate within honeycomb layers which point likely in the [110] direction of β-Mn2V2O7 or the [001] axis of α-Mn2V2O7. However, a rather small jump of magnetization at spin-flop transition suggests a possible partition of crystal to some domains through β-to-α transition on cooling or much complex spin structure in honeycomb lattice with some frustration.  相似文献   

2.
A new vanadate PbCo2V2O8 was obtained through the study of PbO-CoO-V2O5 ternary system. The crystal structure was determined by Rietveld method, indicating that PbCo2V2O8 has a tetragonal structure of space group I41cd with a spiral chain along the c-axis. Magnetic properties of the titled compound were investigated by means of susceptibility, magnetization, and heat capacity measurements. The results show that PbCo2V2O8 is a quasi-one-dimensional canted antiferromagnet with Neel temperature of ∼4 K, being consistent with its crystal structure.  相似文献   

3.
Manganese oxide (hausmannite) polyhedral nanocrystals were prepared by a microwave-assisted solution-based method using Mn(CH3COO)2 and (CH2)6N4 at 80 °C. The as-prepared Mn3O4 nanocrystals were characterized by means of X-ray diffraction, field-emission transmission electron microscopy, field-emission scanning electron microscopy and Raman spectrum. Mn3O4 polyhedral nanocrystals prepared by microwave heating at 80 °C for 60 min were of cubic and rhombohedral shapes with the edge lengths in the range of 15-40 nm. Mn3O4 nanocrystals grew following the Ostwald ripening mechanism with increasing reaction time. High-resolution transmission electron microscopy and selected area electron diffraction confirm that the as-obtained polyhedral nanocrystals were single-crystalline. The magnetic behavior of Mn3O4 nanocrystals was studied. Mn3O4 nanocrystals show an obvious ferromagnetic behavior at low temperatures. The magnetic behavior of Mn3O4 nanocrystals was sensitive to crystal size. Ferromagnetic onset temperatures (Tc) of samples 1 and 3 are 40.6 and 41.1 K, respectively, lower than that observed for bulk Mn3O4 (42 K).  相似文献   

4.
Single crystals of both Ba7Li3Ru4O20 and Ba4NaRu3O12 were grown from reactive molten hydroxide fluxes. Ba7Li3Ru4O20 is a 7L-layer perovskite-related phase resulting from the stacking of six [AO3] layers and one oxygen deficient [AO2] layer, thereby creating LiO4 tetrahedra in addition to the LiO6 octahedra and face-sharing Ru2O9 bi-octahedra formed from the [AO3] layers. The compound crystallizes in the space group with a=5.7927(1) Å and c=50.336(2) Å, Z=3. Ba4NaRu3O12 crystallizes in the space group P63mc with lattice parameters of a=5.8014(2) Å and c=19.2050(9) Å, Z=2. Ba4NaRu3O12 is identical to a previously reported neutron refinement structure. The magnetic properties of Ba7Li3Ru4O20 are also reported.  相似文献   

5.
The adsorption of pyridine on V2O5−WO3/ZrO2 has been studied by FTIR. In V2O5/ZrO2 (2 wt.%), the number of both Br?nsted and Lewis acidic sites increased with the addition of WO3, while in V2O5/ZrO2 (5 wt.%), Br?nsted sites increased and Lewis sites did not change.  相似文献   

6.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

7.
Half-metallic Fe3O4 films grown on a Si (100) substrate with a tantalum (Ta) buffer layer were prepared by DC magnetron reactive sputtering. Primary emphasis was placed on magnetic field growth of Fe3O4 thin film. The experiment's results showed that applying an external magnetic field to the samples during the growth was efficient to promote the polycrystalline Fe3O4 growth along certain directions. The magnetoresistance (MR) was also tested for comparison of the samples prepared with and without an external magnetic field, and showed that applying an external magnetic field can promote the MR values.  相似文献   

8.
以聚乙烯吡咯烷酮(PVP)和偏钒酸铵(NH4VO3)为原料,利用静电纺丝技术结合溶胶过程制备PVP/NH4VO3纤维,对纤维缓慢控温处理制备V2O5微纳米棒。采用热重-差热分析(TG-DTA)、X射线衍射光谱(XRD)、傅立叶红外光谱(FT-IR)、场发射扫描电子显微镜(FE-SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis)技术手段对V2O5微纳米棒的结构和表面形态进行表征。以亚甲基蓝(MB)的光降解为模型反应,研究V2O5微纳米棒的光催化性能。结果表明:热处理温度对催化剂表面形态和晶相的生长有明显影响,550℃煅烧的V2O5微纳米棒在可见光区对MB的光降解效率最高,并分析和探讨了可能的光催化机理。  相似文献   

9.
V4O9: A missing link of Wadsley phases has been successfully synthesized by using sulfur as a reducing agent at a low temperature and its structure has been determined by combining electron, X-ray and neutron diffractions. V4O9 has an orthorhombic Cmcm structure and the lattice parameters are a=10.356(2) Å, b=8.174(1) Å and c=16.559(3) Å at room temperature. The structure is composed of shared edges and corners of three types of polyhedra; a VO6 distorted octahedron, a VO5 pyramid and a VO4 tetrahedron. The structure of V4O9 is very similar to that of vanadyl pyrophosphate (VO)2P2O7 which has PO4 tetrahedra instead of VO4 tetrahedra. This indicates that V4O9 is a salt of pyro-ion [V2O7]4-; (VO)2V2O7. The magnetic properties of V4O9 have been investigated by magnetic susceptibility, high-field magnetization and inelastic neutron scattering measurements. V4O9 is a quantum spin system with a spin-gapped ground state. The excitation gap between the singlet ground state and the excited triplet state is approximately 73 K. The magnetic susceptibility behavior suggests that V4O9 is a spin-1/2 dimer system with significant interdimer interactions, as opposed to (VO)2P2O7, which is an alternating spin-1/2 chain system. This difference is thought to be due to the fact that VO4-mediated interactions are considerably weaker than PO4-mediated interactions.  相似文献   

10.
采用水热合成法制备了Co3O4及复合Ag/Co3O4、CuO/Co3O4一维纳米产品。用XRD,FE-SEM和TEM手段对产品进行了表征。采用循环伏安法研究了合成产品修饰的玻碳电极在碱性溶液中对对硝基苯酚的电催化还原性能。与裸玻碳电极相比,1mmol·L-1的对硝基苯酚在用Co3O4、特别是CuO/Co3O4修饰的玻碳电极上还原的峰电流明显增大,用Ag/Co3O4(Ag/Co原子比分别为1∶5和2∶5)修饰的玻碳电极催化还原对硝基苯酚时,尽管还原峰电流增大不是太大,但其峰电位明显降低(分别降低0.265和0.371V)。  相似文献   

11.
Water-soluble conducting poly(2-(3thienyloxy)ethanesulfonic acid) (PTOESA)/V2O5 nanocomposite, (PTOESA)xV2O5, was prepared by simply mixing PTOESA with V2O5 wet gel at room temperature. XRD data showed that the interlayer spacings of (PTOESA)xV2O5 films are 14.0±1.5 Å and increased as the polymer content increased. These values are consistent with the insertion of polythiophene chains into the V2O5 layer gallery. The formation of alternative layers of PTOESA and V2O5 was further supported by depth profile SIMS analyses. Cyclic voltammograms of (PTOESA)xV2O5 film showed two pairs of redox peaks with colors varying from orange, yellowish green, green, to purple blue, depending on the stoichiometry of the nanocomposites. Moreover, a synergetic effect was observed on the electrochromic properties of these nanocomposites. It was found that the optical contrast (ΔOD) of the composites is better than those of PTOESA and V2O5 at the film thickness from 150 to 500 nm. The oxidation optical response time of (PTOESA)xV2O5 is independent of the stoichiometry and falls in between those of PTOESA and V2O5. At higher polymer content (x>0.5), the reduction optical response time of (PTOESA)xV2O5 is smaller than those of PTOESA and V2O5. Variable temperature conductivity data showed that the conductivity of (PTOESA)xV2O5 films increased as temperature increased, characteristic of thermal activated behavior, which was dominated by the interparticle contact resistance. The room-temperature conductivity of water-soluble (PTOESA)xV2O5 films was in between those of PTOESA and V2O5 xerogel and higher conductivity was found in the composite with lower polymer content. The anomalous conductivity of (PTOESA)xV2O5 with high PTOESA content may be due to the reason that the higher the polymer content, the bigger the grain size of (PTOESA)xV2O5 film as revealed with scanning electron microscopy and AFM micrographs.  相似文献   

12.
Mesoporous vanadium oxide (V2O5) thin films were deposited electrochemically onto indium tin oxide-coated glass substrates from an aqueous solution of vanadyl sulfate using CTAB (hexadecyltrimethylammonium bromide) as a templating agent. For comparison, a control sample was electrodeposited without CTAB templating. Transmission electron microscopy and small angle X-ray diffraction indicated the presence of mesoporosity with a well-ordered lamellar phase in the electrodeposited films. The crystallinity of the V2O5 thin films was confirmed by X-ray diffraction. Cyclicvoltammetry and chronoamperometry were used to measure electrochemical properties of synthesized films. The mesoporous films prepared with CTAB templating had a much higher capacity and lithium-ion diffusion rate than the non-porous electrode prepared without CTAB templating.  相似文献   

13.
We report on the crystallographic structure of the layered perovskite iridate Sr3Ir2O7, investigated using transmission electron microscopy. The space group was found to be Bbcb (, No. 68 in the International Tables for Crystallography) at 315 K. A very fine twin structure with 90° rotation with respect to the c-axis was observed. The crystal structure at temperatures lower than 285 K, where a phase transition from paramagnetism to weak ferromagnetism is known to occur, was also examined. There was no difference in the extinction rule for the diffraction patterns between the two phases. We conclude that there is no change in the space group for this magnetic transition. There still remains the possibility of a change in the rotation angle of IrO6 octahedrons and a corresponding change in the interatomic distance between Ir and O, though.  相似文献   

14.
A new borate, LiNaB4O7, has been synthesized and characterized by single-crystal X-ray structure determination. The material crystallizes in the orthorhombic system, noncentrosymmetric space group Fdd2, with unit cell dimensions a=13.325(2), b=14.099(2), c=10.243(2) Å, Z=16, and V=1924.3(7) Å3. Like Li2B4O7, the structure is built of two symmetrically independent, interpenetrating polyanionic frameworks built from condensation of the B4O9 fundamental building block, which is comprised of two distorted BO4 tetrahedra and two BO3 triangles. The interpenetrating frameworks produce distinct tunnels that are selectively occupied by the Li and Na atoms. Large single crystals exhibiting an optical absorption edge with λ<180 nm have been grown via the top-seeded-solution-growth method. The SHG signal (0.15× potassium dihydrogen phosphate (KDP)) is consistent with the calculated components of the SHG tensor and the approximate centrosymmetric disposition of the independent and interpenetrating frameworks. A complete analysis of polarized IR and Raman spectra confirms a close relationship between the title compound and Li2B4O7.  相似文献   

15.
V2O3 nanopowder with spherical particles was prepared by reducing pyrolysis of the precursor, (NH4)5[(VO)6(CO3)4(OH)9]·10H2O, in H2 atmosphere. The thermolysis process of the precursor in a H2 flow was investigated by thermogravimetric analysis and differential thermal analysis. The results indicate that pure V2O3 forms at 620°C and crystallizes at 730°C. The effects of various reductive pyrolysis conditions on compositions of V2O3 products were studied. Scanning electron micrographs show that the particles of the V2O3 powder obtained at 650°C for 1 h are spherical about 30 nm in size with more homogeneous distribution. Experiments show that nanopowder has larger adsorption capacity to gases and is more easily reoxidized by air at room temperature than micropowder. Differential scanning calorimetry experiment indicates that the temperature of phase transition of nano-V2O3 powder is −119.5°C on cooling or −99.2°C on heating. The transition heats are −12.55 J g−1 on cooling and 11.42 J g−1 on heating, respectively.  相似文献   

16.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

17.
采用溶胶凝胶法制备了V2O5-TiO2复合半导体材料,通过Raman、XRD及UV-Vis DRS等实验方法研究了V2O5与TiO2复合对材料表面组成、晶体结构以及光响应性能的影响。结果表明:钒加入后优先与TiO2作用形成较为稳定的金红石型TiVO4晶相,其中V4+是促进TiO2发生相变的关键;随着钒加入量的增加,V2O5由表面高分散状态逐渐聚集形成晶相,并释放部分Ti4+使之形成锐钛矿型TiO2晶相,使得体相中金红石型TiO2的含量有所下降;复合后形成的TiVO4晶相显著提高了材料对可见光的吸收率,并使其吸光域红移至460 nm左右。  相似文献   

18.
通过调节B2O3‐Bi2O3‐ZnO‐Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1364,介电损耗低至1.2%。  相似文献   

19.
The ternary compound UFe7Al5 was synthesized by arc melting, followed by annealing at 850°C. The crystal structure was determined by single-crystal X-ray diffraction and refined to a residual value of R=0.039 (S=1.030), with lattice parameters a=8.581(2) Å and c=4.946(1) Å. This compound is a new extreme composition in the family of intermetallics with general formula UFexAl12−x crystallizing in the tetragonal ThMn12-type structure, space group I4/mmm. In contrast to UFexAl12−x within the composition range 4?x?6, in UFe7Al5 the additional iron atom is found in the 8i equipositions. Magnetization measurements versus temperature show two magnetic transitions at 363 and 275 K, respectively, with a ferromagnetic behavior below the highest temperature transition. 57Fe Mössbauer data indicate that the high-temperature transition is related to the ordering of the iron atoms. The dependence of the isomer shifts and magnetic hyperfine fields on the crystallographic site and on the number of the iron nearest neighbors is similar to that observed in the other UFexAl12−x and rare-earth analogues. The magnetic hyperfine field values of iron atoms on 8i sites is larger than in the other sites, in agreement with previous data obtained for other ThMn12-type compounds.  相似文献   

20.
通过调节B2O3-Bi2O3-ZnO-Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1 350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1 364,介电损耗低至1.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号