首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-of-flight powder neutron diffraction has been performed on oxides with composition (La1−xNdx)2Zr2O7 and Nd2(Zr1−xTix)2O7, where x=0, 0.2, 0.4,…1.0, in order to determine the solid solution behaviour across each series. Between La2Zr2O7 and Nd2Zr2O7, a cubic pyrochlore phase is observed (, Z=8). A linear decrease in the lattice parameter from 10.8047 to 10.6758 Å indicates complete miscibility of the two end-members. For the same series, the 48f oxygen x-parameter increases from 0.3313 to 0.3348, suggesting increased distortion of the 6 coordinate B sites and reduced distortion of the 8 coordinate A sites. There is limited solubility of Nd2Ti2O7 in Nd2Zr2O7. Exsolution of a monoclinic phase (P21, Z=8) rich in Nd2Ti2O7 is observed at approximately x=0.56. The compositional range over which a solid solution exists is more extensive than that which has been previously reported. The solubility of Nd2Zr2O7 in Nd2Ti2O7 is very low.  相似文献   

2.
La3NbO7 and Nd3NbO7 are insulating compounds that have an orthorhombic weberite-type crystal structure and undergo a phase transition at about 360 and 450 K, respectively. The nature of the phase transitions was investigated via heat capacity measurements, synchrotron X-ray and neutron diffraction experiments. It is here shown that above the phase transition temperature, the compounds possess a weberite-type structure described by space group Cmcm (No. 63). Below the phase transition, the high temperature phase transforms into a weberite-type structure with space group Pmcn (No. 62). The phase transformation primarily involves the off-center shifting of Nb5+ ions inside the NbO6 octahedra, combined with shifts of one third of the Ln3+ (Ln3+=La3+ and Nd3+) ions at the center of the LnO8 polyhedra towards off-center positions. The phase transition was also proven to have great impacts on the dielectric properties.  相似文献   

3.
The crystal and magnetic structures of SrFe2+2(PO4)2 have been determined by neutron powder diffraction data at low temperatures (space group P21/c (no. 14); Z=4; a=9.35417(13) Å, b=6.83808(10) Å, c=10.51899(15) Å, and β=109.5147(7)° at 15 K). Two magnetic phase transitions were found at T1=7.4 K (first-order phase transition) and T2=11.4 K (second-order phase transition). The transition at T2 was hardly detectable by dc and ac magnetization measurements, and a small anomaly was observed by specific heat measurements. At T1, strong anomalies were found by dc and ac magnetization and specific heat. The structure of SrFe2(PO4)2 consists of linear four-spin cluster units, Fe2-Fe1-Fe1-Fe2. Below T1, the propagation vector of the magnetic structure is k=[0,0,0]. The magnetic moments of the inner Fe1-Fe1 atoms of the four-spin cluster unit are ferromagnetically coupled. The magnetic moment of the outer Fe2 atom is also ferromagnetically coupled with that of the Fe1 atom but with spin canting. The four-spin cluster units form ferromagnetic layers parallel to the [−101] plane, while these layers are stacked antiferromagnetically in the [−101] direction. Spin canting of the outer Fe2 atoms provides a weak ferromagnetic moment of about 1 μB along the b-axis. The refined magnetic moments at 3.5 K are 4.09 μB for Fe1 and 4.07 μB for Fe2. Between T1 and T2, a few weak magnetic reflections were observed probably due to incommensurate magnetic order.  相似文献   

4.
The first member of the Ruddlesden-Popper family, Ca2MnO4, has been revisited. Coexistence of two structures has been shown from electron microscopy at room temperature and neutron diffraction data have evidenced two antiferromagnetic structures at low temperature. Two forms, with an orthorhombic Aba2 ( and c≈12 Å) and a tetragonal I41/cad ( and c≈24 Å) symmetries, were found to coexist coherently within the same matrix.  相似文献   

5.
The results of in situ high-temperature X-ray and neutron powder diffraction experiments reconcile inconsistencies in previous reports on the symmetry of high-temperature phases of SrAl2O4. The material undergoes two reversible phase transitions and at 680 and 860 °C, respectively, and the latter one is experimentally observed and characterized for the first time. The higher symmetry above the transition is gained by disordering off-center split site of oxygen atoms around trigonal axis rather than by unbending Al–O–Al angle to the ideal value 180°. The analysis of the literature suggests that it is a common feature of the P6322 phases of stuffed tridymites.  相似文献   

6.
以溶胶-凝胶法在850℃制备了Al掺杂La10(SiO4)6O3,即La10(SiO4)6-x(AlO4)xO3-0.5x(x=0,0.5,1.0,1.5和2.0),通过TG-DTA、XRD、IR和SEM表征,所得产品为磷灰石相。以电化学阻抗谱研究了其导电性能,发现决定电导率大小的因素有两种,一是间隙氧的数量,二是晶胞的大小,两种因素的综合作用,使得Al掺杂0.5时La10(SiO4)5.5(AlO4)0.5O2.75的电导率最大,在700℃时其电导率达到1.88×10-2S·cm-1。氧分压对电导率的研究表明,其主要的电荷载体是O2-离子。  相似文献   

7.
The crystal structure of Ca5Te3O14 at room temperature was studied by the Rietveld method using combined X-ray and neutron powder diffraction data. The compound crystallizes in the space group Cmca with the lattice parameters a=10.4268(2) Å, b=10.3908(2) Å and c=10.4702(2) Å. The structure of Ca5Te3O14 is chiolite-like and consists of a framework of corner-linked TeO6 octahedral layers in which a linear TeO2 group of every fourth octahedron is substituted by a Ca atom. This type of structure was previously observed in BaSr4U3O14. The relationship between the chiolite-like structure and the fluorite structure is discussed.  相似文献   

8.
Crystallographic space group, structural parameters and their thermal changes in oxide-ion-conducting Nd9.33(SiO4)6O2 were investigated using high-temperature single-crystal X-ray diffraction experiments in the temperature range of 295?T?900 K. The title compound has the apatite structure (space group P63/m), and no notable structural change occurred over the temperature range examined. Observed anisotropy in thermal motions of oxide ions which belong to SiO4 tetrahedron indicated high rigidity of the tetrahedron in the structure, indicating that they form sp3 hybrid orbitals and the ligand oxygens do not take part in oxide-ion conductivity. Virtually full occupation of the 6h Nd site and highly anisotropic displacements of oxide ion inside the hexagonal channel were maintained over the temperature range examined. This result confirms that oxide-ion transport inside the hexagonal channel is the dominant process of conduction in the title compound.  相似文献   

9.
Solid-state reaction between SrCO3, Cr2O3 and SrF2 has produced the apatite phase Sr10(CrO4)6F2 and Sr2CrO4 which adopts the K2NiF4-type structure. The reaction outcome was very sensitive to the heating rate with rapid rise times favouring the formation of Sr2CrO4, which has been synthesised at ambient pressure for the first time. Powder X-ray diffraction and electron diffraction confirmed that Sr2CrO4 adopts a body centred tetragonal cell (space group I4/mmm) with lattice parameters a=3.8357(1) Å and c=12.7169(1) Å, while a combination of neutron and X-ray diffraction verified Sr10(CrO4)6F2 is hexagonal (space group P63/m) with lattice parameters a=9.9570(1) Å and c=7.4292(1) Å. X-ray photoelectron spectroscopy and magnetic measurements were used to characterise the oxidation states of chromium contained within these phases.  相似文献   

10.
A new bismuth tellurium oxychloride was obtained by reaction of BiOCl and TeO2 in air. According to energy dispersive X-ray spectroscopy and neutron powder diffraction refinement the composition of the substance was determined as Bi0.87Te2O4.9Cl0.87. The new compound crystallizes in the trigonal system space group R 3¯ (#148), Z=6, a=4.10793(4), c=31.1273(4) Å, χ2=3.20, wRp=0.0369. Bi0.87Te2O4.9Cl0.87 has a new type of layered structure constructed by Bi-Te-O layers separated by chloride ions. The Te atoms in Bi0.87Te2O4.9Cl0.87 show an unusual umbrella-like environment. A comparison with known related structures has been made.  相似文献   

11.
Powder specimens of the layered triangular-lattice antiferromagnets RbFe(MoO4)2 and CsFe(SO4)2 were prepared and neutron powder diffraction experiments were carried out in order to determine the magnetic structure. The magnetic structure of both compounds is the so-called 120° structure in the triangular plane and is incommensurate between the planes. The ordered moments are confined in the basal ab-plane. It is also found that RbFe(MoO4)2 exhibits structural phase transition at around 190 K from to .  相似文献   

12.
The crystal structure and photoluminescent properties of europium doped silicate Sr2Y8(SiO4)6O2:Eu3+ are reported. The Sr2Y8−xEux(SiO4)6O2 compounds have typical apatite crystal structures with the P63/m space group. The distributions of Eu3+ between the two crystallographic sites 4f and 6h in the apatite structure are investigated by the powder X-ray diffraction and Rietveld refinement. Results show that Eu3+ ions only occupy the 4f sites when the Eu doping concentration is low (x=0-0.5 in Sr2Y8−xEux(SiO4)6O2). However, in higher concentrations, Eu3+ ions begin to enter the 6h sites as well. The distributions of the Eu3+ are also reflected in photoluminescent spectra. The CIE coordinates for Sr2Y6Eu2(SiO4)6O2 are (0.63, 0.37), which is close to the pure red color.  相似文献   

13.
The crystal structures of Ba2LnSbO6 (Ln=La, Pr, Nd and Sm) at room temperature have been investigated by profile analysis of the Rietveld method using either combined X-ray and neutron powder diffraction data or X-ray powder diffraction data. It has been shown that the structure of Ba2LnSbO6 with Ln =La, Pr and Nd are neither monoclinic nor cubic as were previously reported. They are rhombohedral with the space group . The distortion from cubic symmetry is due to the rotation of the LnO6/SbO6 octahedra about the primitive cubic [111]p-axis. On the other hand, the structure of Ba2SmSbO6 is found to be cubic. All compounds contain an ordered arrangement of LnO6 and SbO6 octahedra.  相似文献   

14.
The bismuth basic nitrate [Bi6O4(OH)4](NO3)6 crystallizes in a rhombohedral hexagonal unit cell with parameters , , , Z=6, space group R-3. The synthesis, formula determination, thermogravimetric analysis and nitrate assay, and finally, its crystal structure refinement determined at 150(2) K by synchrotron X-ray microcrystal diffraction are reported. Its structure is built from [Bi6O4(OH)4]6+ polycations, six per unit cell, disordered over two positions. Two oxygen atoms are common to the two antagonist polycations (full occupancy) while the remaining six are partially occupied. The [Bi6O4(OH)4]6+ hexanuclear clusters form columns along the c-axis. The cohesion between polycationic entities is effected by nitrate anions through either OH-ONO2 hydrogen bonds or Bi-ONO2 bonds. One of the two independent [NO3] groups is also disordered over two positions. Only a local order in the columns is obtained by formation of pairs of ordered [Bi6O4(OH)4]6+ polycations.  相似文献   

15.
The crystal structure, spectroscopic and thermal properties of ammonium dicyanamide NH4[N(CN)2] have been thoroughly investigated by means of temperature-dependent single-crystal X-ray and neutron powder diffraction, vibrational and MAS-NMR spectroscopy as well as thermoanalytical measurements. The comprehensive elucidation of structural details is of special interest with respect to the unique solid-state transformation of ammonium dicyanamide into dicyandiamide. This reaction occurs at temperatures >80°C and it represents the isolobal analogue of Wöhler's historic transformation of ammonium cyanate into urea. NH4[N(CN)2] crystallizes in the monoclinic space group P21/c with lattice constants a=3.7913(8), b=12.412(2), c=9.113(2) Å, β=91.49(2)° and Z=4 (single-crystal X-ray data, T=200 K). The temperature dependence of the lattice constants shows anisotropic behavior, however, no evidence for phase transitions in the investigated temperature range was observed. The hydrogen positions could be localized by neutron diffraction (10-370 K), and the temperature-dependent behavior of the ammonium group has been analyzed by Rietveld refinements using anisotropic thermal displacement parameters. They were interpreted by utilizing a rigid body model and extracting the libration and translation matrices of the ammonium ion by applying the TLS formalism. The results obtained by the diffraction methods were confirmed and supplemented by vibrational spectroscopy and solid-state 15N and 13C MAS-NMR investigations.  相似文献   

16.
The structures of the oxyorthogermanate La2(GeO4)O and the apatite-structured La9.33(GeO4)6O2 have been refined from powder neutron diffraction data. La2(GeO4)O crystallizes in a monoclinic unit cell (P21/c) and is cation stoichiometric in contrast to previous reports. La9.33(GeO4)6O2 crystallizes in a hexagonal unit cell (P63/m) and the powder diffraction data show anisotropic peak broadening that is observed in electron diffraction patterns as incommensurate diffuse spots at hkq reciprocal planes (with q=1.6-1.7) and can be attributed to a correlated disorder in the “apatite channels”. This compound was doped up to a nominal composition close to M2La8(GeO4)6O2 with M=Ca, Sr, Ba. The dopant ions preferentially occupy the 4f sites as the number of La vacancies decreases. The measured ionic conductivity of La9.33(GeO4)6O2 is about 3 orders of magnitude larger than for La2(GeO4)O at high temperatures and decreases with increasing dopant content from the highest value of about 0.16 S cm−1 at 1160 K.  相似文献   

17.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

18.
We have successfully synthesized a polycrystalline sample of tetragonal garnet-related Li-ion conductor Li7La3Hf2O12 by solid state reaction. The crystal structure is analyzed by the Rietveld method using neutron powder diffraction data. The structure analysis identifies that tetragonal Li7La3Hf2O12 has the garnet-related type structure with a space group of I41/acd (no. 142). The lattice constants are a=13.106(2) Å and c=12.630(2) Å with a cell ratio of c/a=0.9637. The crystal structure of tetragonal Li7La3Hf2O12 has the garnet-type framework structure composed of dodecahedral La(1)O8, La(2)O8 and octahedral HfO6. Li atoms occupy three types of crystallographic site in the interstices of this framework structure, where Li(1) atom is located at the tetrahedral 8a site, and Li(2) and Li(3) atoms are located at the distorted octahedral 16f and 32g sites, respectively. These Li sites are filled with the Li atom. The present tetragonal Li7La3Hf2O12 sample exhibits bulk Li-ion conductivity of σb=9.85×10−7 S cm−1 and grain-boundary Li-ion conductivity of σgb=4.45×10−7 S cm−1 at 300 K. The activation energy is estimated to be Ea=0.53 eV in the temperature range of 300-580 K.  相似文献   

19.
The room temperature structure of Bi0.75Sr0.25MnO3 has been fitted to high-resolution synchrotron X-ray and time-of-flight neutron powder diffraction data. Constrained structural models were refined using a Pn11 supercell (, , , and α=89.894(1)°) of the underlying Pnma perovskite structure. The best-fit model evidences a 3:1 Mn3+/Mn4+charge ordering with only 30% of the ideal separation of bond valence sums. An ordered intergrowth of antiferro-orbitally ordered (LaMnO3 type) and charge and ferro-orbitally ordered (YBaMn2O6 type) blocks is observed. Off-centre Bi/Sr displacements are ferroelectrically ordered in this model.  相似文献   

20.
The structure of 14 compounds in the series Ba2LnTaO6 have been examined using synchrotron X-ray diffraction and found to undergo a sequence of phase transitions from I2/m monoclinic to I4/m tetragonal to cubic symmetry with decreasing ionic radii of the lanthanides. Ba2LaTaO6 is an exception to this with variable temperature neutron diffraction being used to establish that the full series of phases adopted over the range of 15-500 K is P21/n monoclinic to I2/m monoclinic to rhombohedral. The chemical environments of these compounds have also been investigated and the overbonding to the lanthanide cations is due to the unusually large size for the B-site in these perovskites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号