首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The Frenkel defect model is applied to determine the oxygen fugacity that corresponds to the preparation of magnetite-hercinite solid solutions with an exact 4:3 oxygen:cation ratio. The result are presented in graphic form for .  相似文献   

2.
Crystal structure and electron density in the apatite-type ionic conductor La9.71(Si5.81Mg0.18)O26.37 have been investigated at 302, 674 and 1010 K by Rietveld refinement and a whole-pattern fitting approach based on the maximum-entropy method (MEM) using synchrotron X-ray powder diffraction data. Second harmonic generation measurements indicated that the space group of this material is centrosymmetric. Among the possible hexagonal groups P63/m, P63 and the former is correct for La9.71(Si5.81Mg0.18)O26.37. Rietveld refinements suggested an oxygen interstitial site (0.03,0.15,0.85) near the hexagonal axis. MEM analyses revealed that the Si0.97Mg0.03 atom has covalent bonds with four adjacent oxygen atoms to form a tetrahedron. The oxygen O4 atom located at the 2a site (0.0,0.0,1/4) exhibited large atomic displacement parameters along the c axis and electron density mapping also indicated the wide distribution consistent with migration of oxygen ions in this direction.  相似文献   

3.
Single crystals of Sb2−xFexTe3 (cFe=0-9.5×1019 cm−3) were prepared by Bridgman method. The interpretation of the reflection spectra in plasma resonance region indicates that Fe increases the concentration of holes (acceptor) and each Fe atom incorporated in Sb2Te3 structure liberates 0.4-0.5 hole. Observed effect is elucidated by means of point defect model. According to the model Fe atoms enter the structure and form uncharged substitutional defects . Since this defect cannot affect the free-carrier concentration directly, we assume an interaction of the entering Fe-atoms with natives defects leading to a rise in the concentration of antisite defects , to a decrease of concentration, and to an increase in the concentration of holes.  相似文献   

4.
Single crystals of two cerium complexes, with mixed-ligands oxalate and glycolate, have been prepared in a closed system, at 200 °C for one month: [Ce2(H2O)3](C2O4)2.5(H3C2O3) 1 and Ce2(C2O4)(H3C2O3)42. 1 crystallizes in the orthorhombic system, space group Pbca, with , , and while 2 crystallizes in the tetragonal system, space group P42/nbc, with , . For both complexes, the three-dimensional framework structure is built up by the linkages of the cerium and all the oxygen atoms of oxalate and glycolate ligands. For 2, its structure presents a nice case of two 3D identical sub-lattices, with 2-fold interpenetration. The only link between these two sub-lattices is assumed by strong hydrogen bonds between the hydroxyl function of the glycolate and the oxygen atoms of the oxalate. The schematized framework of 2, including only the cerium atoms, can be compared to that of cooperite (PtS).For 1, the two independent cerium have 9- or 10-fold coordination, forming a distorted monocapped or bicapped square antiprism polyhedron while for 2, the two independent cerium present 8-fold coordination, forming an almost regular dodecahedron. A quite relevant feature of 2 is the complete absence of water. 2 has been extended to other lanthanides (Ln=Ce…Lu, yttrium included) leading to a family, which has been characterized by infra-red and thermal analysis.  相似文献   

5.
A novel 3-D compound of (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)]·6.5H2O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with , , , β=112.419(3)°, , Z=8, R1=0.0463 and wR2=0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group CO2CONHCH2CH2NH3+, which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445 nm.  相似文献   

6.
The crystal and magnetic structure of the magnetocaloric compound FeMnP0.5Si0.5 has been studied by means of neutron and X-ray powder diffraction. Single phase samples of nominal composition FeMnP0.5Si0.5 have been prepared by the drop synthesis method. The compound crystallizes in the Fe2P-type structure () with the magnetic moments aligned along the a-axis. It is found that the Fe atoms are mainly situated in the tetrahedral 3g site while the Mn atoms prefer the pyramidal 3f position. The material is ferromagnetic (TC=382 K) and at 296 K the total magnetic moment is . It is shown that the magnetic moment in the 3f site is larger () than in the 3g site ().  相似文献   

7.
The crystal structure of Nb22O54 is reported for the first time, and the structure of orthorhombic Nb12O29 is reexamined, resolving previous ambiguities. Single crystal X-ray and electron diffraction were employed. These compounds were found to crystallize in the space groups P2/m (, , , β=102.029(3)°) and Cmcm (, , ), respectively and share a common structural unit, a 4×3 block of corner sharing NbO6 octahedra. Despite different constraints imposed by symmetry these blocks are very similar in both compounds. Within a block, it is found that the niobium atoms are not located in the centers of the oxygen octahedra, but rather are displaced inward toward the center of the block forming an apparent antiferroelectric state. Bond valence sums and bond lengths do not show the presence of charge ordering, suggesting that all 4d electrons are delocalized in these compounds at the temperature studied, T=200 K.  相似文献   

8.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   

9.
An accurate structure refinement of the deuterated analog of the cesium lithium acid sulfate, formerly identified as ‘Cs1.5Li1.5H(SO4)2’, has been carried out using neutron diffraction methods. Like the protonated material reported earlier (Merinov et al., Solid State Ionics 69 (1994) 53), the compound is cubic, , however, the correct stoichiometry is Cs3Li(DSO4)4. There are four formula units per unit cell and six atoms in the asymmetric unit. The lattice constant measured in this work is a=11.743(2) Å, comparable to the earlier results. The structure contains one disordered hydrogen bond, formed between O(2) atoms and located on two of the edges of the single LiO4 tetrahedron. The Li site occupancy is , as is that of the deuterium site. This level of site occupancies is consistent with a structure in which hydrogen bonds are formed only when the lithium site is unoccupied, and explains the otherwise close proximity of the Li and D atoms, 1.394(10) Å. This unusual structural feature furthermore leads to a fixed stoichiometry, as confirmed here by chemical analysis of both the deuterated and protonated materials, despite the partial occupancy of the lithium and deuterium (hydrogen) atom sites.  相似文献   

10.
Tetrahydroborate enclathrated sodalites with gallosilicate and aluminogermanate host framework were synthesized under mild hydrothermal conditions and characterized by X-ray powder diffraction and IR spectroscopy. Crystal structures were refined in the space group P-43n from X-ray powder data using the Rietveld method. Na8[GaSiO4]6(BH4)2: a=895.90(1) pm, V=0.71909(3)×10−6 nm3, RP=0.074, RB=0.022, Na8[AlGeO4]6(BH4)2: a=905.89(2) pm, V=0.74340(6)×10−6 nm3, RP=0.082, RB=0.026. The tetrahedral framework T-atoms are completely ordered in each case and the boron atoms are located at the centre of the sodalite cages. The hydrogen atoms of the enclathrated anions were refined on x, x, x positions, restraining them to boron-hydrogen distances of 116.8 pm as found in NaBD4.The IR-absorption spectra of the novel phases show the typical bands of the tetrahedral group as found in the spectrum of pure sodium boron hydride.The new sodalites are discussed as interesting -containing model compounds which could release pure hydrogen.  相似文献   

11.
We have studied the structural evolution of monoclinic BaZr(PO4)2 during heating up to 835 K by Raman spectroscopy. In agreement with previous studies we found a first-order phase transition at about 730 K during heating while upon cooling the reverse transition occurs at 705 K. However, some disagreement about the crystal structure of the high-temperature polymorph occurs in the literature. While the space group has not yet been determined, the X-ray diffraction pattern of the high-temperature phase has been indexed on either an orthorhombic or a hexagonal unit cell. We found that the number of Raman active internal PO4 vibrational modes decrease from nine to six during the transition. A group theoretical survey through all orthorhombic, trigonal, and hexagonal factor groups revealed that the observed number of vibrations would only be consistent with the Ba and Zr atoms located at a site, the P and two O atoms at a C3v(3m), and six O atoms at a Cs(m) site in the D3d factor group. Based on our Raman data, the space group of the high-temperature polymorph is thus either , , or .  相似文献   

12.
The first indium platinum metal borides have been synthesized and structurally characterized by single crystal X-ray diffraction data. In3Ir3B and In3Rh3B are isotypic. They crystallize with the hexagonal space group and Z=1. The lattice constants are , for In3Ir3B and , for In3Rh3B. The structure which is derived from the Fe2P type is characterized by columns of boron centered triangular platinum metal prisms inserted in a three-dimensional indium matrix. The indium atoms are on split positions. In5Ir9B4 (hexagonal, space group , , , Z=1) crystallizes with a structure derived from the CeCo3B2 type. The structure can be interpreted as a layer as well as a channel structure. In part the indium atoms are arranged at the vertices of a honeycomb net (Schlaefli symbol 63) separating slabs consisting of double layers of triangular Ir6B prisms, and in part they form a linear chain in a hexagonal channel formed by iridium prisms and indium atoms of the honeycomb lattice.  相似文献   

13.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

14.
Three manganese oxalates have been hydrothermally synthesized, and their structures determined by single-crystal X-ray diffraction. MnC2O4·2H2O (I) is orthorhombic, P212121, , , , , Z=4, final R, Rw=0.0832, 0.1017 for 561 observed data (I>3σ(I)). The one-dimensional structure consists of chains of oxalate-bridged manganese centers. [C4H8(NH2)2][Mn2(C2O4)3] (II) is triclinic, , , , , α=81.489(2)°, β=81.045(2)°, γ=86.076(2)°, , Z=1, final R, Rw=0.0467, 0.0596 for 1773 observed data (I > 3σ (I)). The three-dimensional framework is constructed from seven coordinate manganese and oxalate anions. The material contains extra-framework diprotonated piperazine cations. Mn2(C2O4)(OH)2 (III) is monoclinic, P21/c, , , , β=91.10(3)°, , Z=1, final R1, wR2=0.0710, 0.1378 for 268 observed data (I>2σ (I)). The structure is also three dimensional, with layers of MnO6 octahedra pillared by oxalate anions. The hydroxide group is found bonded to three manganese centers resulting in a four coordinate oxygen.  相似文献   

15.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

16.
The two new binary compounds Rh4Ga21 (space group Cmca (Cmce), , , , Pearson symbol oC136) and Rh3Ga16 (space group Ccca (Ccce), , , , Pearson symbol oC76) were synthesised and their crystal structures were solved from single-crystal X-ray diffraction data. From a topological point of view, both these two crystal structures and the crystal structure of PdGa5 can be described either as inhomogeneous intergrowth structures containing three different kinds of segments, or as built up by layers of capped square antiprisms condensed via their capping atoms. Bonding analysis with bonding indicators revealed that the crystal structures of Rh4Ga21 and Rh3Ga16 have to be considered as framework polyanions formed by covalently bonded gallium atoms with embedded rhodium cations.  相似文献   

17.
The synthesis, single crystal structure determination, and Raman spectrum are reported for colorless transparent tribarium disodium tetracyanamide, Ba3Na2(CN2)4. The title compound crystallizes in the space group C2h5-P21/c (#14, , , , β=110.454(4)°, , Z=4, R/wR=0.0266/0.0543). Each sodium atom is surrounded by six nitrogen atoms in octahedral geometry. Sodium centered nitrogen octahedra are linked through face-sharing along the [100] direction to form one-dimensional (1D) chains. These chains are connected to each other through the carbon atoms of cyanamide and make a three-dimensional (3D) network with 1D channels along the [100] direction. Barium atoms and additional cyanamide anions reside in the channels. Each barium atom is irregularly coordinated with nitrogen and carbon from the cyanamide anions. The Raman spectrum shows symmetric vibrations of [NCN]2− corresponding to νsym (1241.5 cm−1) and 2δ (1356.4 cm−1).  相似文献   

18.
The orthothioborates Ce[BS3], Pr[BS3] and Nd[BS3] were prepared from mixtures of the rare earth (RE) metals together with amorphous boron and sulfur summing up to the compositions CeB3S6, PrB5S9 and NdB3S6. The following preparation routes were used: solid state reactions with maximum temperatures of 1323 K and high-pressure high-temperature syntheses at 1173 K and 3 GPa. Pr[BS3] and Nd[BS3] were also obtained from rare earth chlorides RECl3 and sodium thioborate Na2B2S5 by metathesis type reactions at maximum temperatures of 1073 K. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The thioborates are isotypic and crystallize in the orthorhombic spacegroup Pna21 (No. 33; Z=4; Ce: , , ; Pr: , , ; Nd: , , ) . The crystal structures contain isolated [BS3]3‐ groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of undulated kagome nets, which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species.  相似文献   

19.
The luminescence hosts K3YF6 and K3GdF6 were obtained in a single-crystal form. Their crystal structure was determined from single-crystal X-ray diffraction data. Both crystals adopt monoclinic system with space group P21/n, Z=2. Lattice parameters for K3YF6 are refined to the following values , , , β=90.65(3) and for K3GdF6, , , β=90.80(3). The vibrational analysis, IR and Raman spectroscopy at room temperature, was applied to these compounds in order to study the site symmetry of Y3+ and Gd3+ ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号