首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The nonlinear free vibration of carbon nanotubes/fiber/polymer composite (CNTFPC) multi-scale plates with surface-bonded piezoelectric actuators is studied in this paper. The governing equations of the piezoelectric nanotubes/fiber/polymer multiscale laminated composite plates are derived based on first-order shear deformation plate theory (FSDT) and von Kármán geometrical nonlinearity. Halpin–Tsai equations and fiber micromechanics are used in hierarchy to predict the bulk material properties of the multiscale composite. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. A perturbation scheme of multiple time scales is employed to determine the nonlinear vibration response and the nonlinear natural frequencies of the plates with immovable simply supported boundary conditions. The effects of the applied constant voltage, plate geometry, volume fraction of fibers and weight percentage of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the linear and nonlinear natural frequencies of the piezoelectric nanotubes/fiber/polymer multiscale composite plate are investigated through a detailed parametric study.  相似文献   

2.
Sound radiation from shear deformable stiffened laminated plates   总被引:1,自引:0,他引:1  
Sound radiation from shear deformable stiffened laminated plates is studied theoretically. The equations of motion for the composite laminated plate are derived on the basis of the first-order shear deformation plate theory. Two sets of parallel stiffeners interact with the laminated plate only through the normal line forces. By using the Fourier wavenumber transform and the stationary phase method, the far-field sound pressure is described analytically. Sound pressure given by the first-order shear deformation plate theory and the classical thin plate theory is compared, and the differences of sound pressure are shown in the high frequency range for an isotropic plate. Sound pressure and the transverse displacement spectra are presented to illustrate the effects of force location, stiffeners and angle-ply layers. Sound radiation from symmetric and antisymmetric composite plates with multiple loadings is also investigated.  相似文献   

3.
A finite element formulation of the equations governing the laminated anisotropic plate theory of Yang, Norris and Stavsky, is presented. The theory is a generalization of Mindlin's theory for isotropic plates to laminated anisotropic plates and includes shear deformation and rotary inertia effects. Finite element solutions are presented for rectangular plates of antisymmetric angle-ply laminates whose material properties are typical of a highly anisotropic composite material. Two sets of material properties that are typical of high modulus fiber-reinforced composites are used to show the parametric effects of plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle. The numerical results are compared with the closed form results of Bert and Chen. As a special case, numerical results are presented for thick isotropic plates, and are compared with those for 3-D linear elasticity theory and Mindlin's thick plate theory.  相似文献   

4.
A higher-order shear deformation theory is used to determine the natural frequencies and buckling loads of elastic plates. The theory accounts for parabolic distribution of the transverse shear strains through the thickness of the plate and rotary inertia. Exact solutions of simply supported plates are obtained and the results are compared with the exact solutions of three-dimensional elasticity theory, the first-order shear deformation theory, and the classical plate theory. The present theory predicts the frequencies and buckling loads more accurately when compared to the first-order and classical plate theories.  相似文献   

5.
Nonlinear forced vibrations of rectangular plates carrying a central concentrated mass are studied. The plate is assumed to have immovable edges and rotational springs; numerical results are presented for clamped plates. The Von Kármán nonlinear plate theory is used, but in-plane inertia in both the plate and the mass is retrained. The problem is discretized into a multi-degree-of-freedom (dof) system by using an energy approach and Lagrange equations taking damping into account. A pseudo-arclength continuation method is used in order to obtain numerical solutions. Results are presented as both (i) frequency-amplitude curves and (ii) time domain responses. The effect of gravity and the effect of the consequent initial plate deflection are also investigated.  相似文献   

6.
A semi-analytical method incorporating various displacement-based formulations has been developed to investigate propagation of time harmonic waves and vibrations in fiber reinforced polymer composite laminated and sandwich plates. Various displacement-based models starting from the first order shear deformation theory to the fourth order theory have been developed using combinations of linear, quadratic, cubic and quartic variation of axial and transverse displacements through the thickness of a lamina or a mathematical sub-layer. These displacement-based formulations have been validated by comparing their results with the analytical solutions available in the literature. Results of all the displacement models have been compared with those obtained by displacement model using quartic variation of in-plane and transverse displacements for vibration problem. Higher order displacement-based theory using cubic variation of in-plane and transverse displacements through the thickness of sub-layer has been found to yield converging results for wave propagation in laminated composite plates as well as for vibration problems. All the investigations performed indicate the importance of higher order theories for analysis of wave propagation and vibrations in composite laminated and sandwich plates.  相似文献   

7.
The geometrically nonlinear free vibrations of thin isotropic circular plates are investigated using a multi-degree-of-freedom model, which is based on thin plate theory and on Von Kármán's nonlinear strain-displacement relations. The middle plane in-plane displacements are included in the formulation and the common axisymmetry restriction is not imposed. The equations of motion are derived by the principle of the virtual work and an approximated model is achieved by assuming that the in-plane and transverse displacement fields are given by weighted series of spatial functions. These spatial functions are based on hierarchical sets of polynomials, which have been successfully used in p-version finite elements for beams and rectangular plates, and on trigonometric functions. Employing the harmonic balance method, the differential equations of motion are converted into a nonlinear algebraic form and then solved by a continuation method. Convergence with the number of shape functions and of harmonics is analysed. The numerical results obtained are presented and compared with available published results; it is shown that the hierarchical sets of functions provide good results with a small number of degrees of freedom. Internal resonances are found and the ensuing multimodal oscillations are described.  相似文献   

8.
《Applied Acoustics》1987,22(1):1-13
Using previously derived governing equations, this paper presents closed form solutions for the statics and dynamics of thick rectangular plates. A higher-order shear deformation theory is developed for the vibration and buckling of simply supported orthotropic plates. Present results based on higher-order theory are compared with the results of other theories. It can be concluded from the natural frequency results that the accuracy of the present theory is better than the other theories. In addition, the effects of various orthotropic parameters on the natural frequencies and buckling loads are studied.  相似文献   

9.
The problem of bending waves localized near the free edge of a transversely isotropic plate is investigated using the Ambartsumian higher-order plate theory which takes account of the transverse shears generated by flexural deformation. Unlike the first-order Reissner-Mindlin theory, which also takes account of transverse shears, Ambartsumian's analysis does not demand that plane normal cross-sections remain plane during bending. Within this analysis the existence of localized bending waves in transversely isotropic plates is established, and solutions of the dispersion equation obtained for different values of the elastic parameters.The analysis of frequencies of localized bending waves shows that for thick plates the effect of anisotropy can be considerable. For the particular case of vibrations of a narrow plate, from the long wave approximation a new beam vibration equation of the Timoshenko type is obtained for a transversally isotropic plate.  相似文献   

10.
均匀流中剪切变形加筋层合板声与振动特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
金叶青  姚熊亮  庞福振  张阿漫 《物理学报》2013,62(13):134306-134306
基于一阶剪切变形理论, 建立了分析均匀流中周期加筋层合板声振特性的理论模型. 该模型应用对流波动方程及边界条件精确考虑了均匀流与层合板的耦合作用, 加强筋通过法向线力及扭矩与层合板相互作用, 利用傅里叶波数变换和稳相法, 得到了位移谱和辐射声压的解析表达式. 计算结果与已有公开数据符合良好, 验证了模型的有效性. 数值结果表明, 在高频段不能忽略剪切变形和加强筋扭转运动的影响; 增大均匀流速度可降低结构的辐射声压; 适当调整板厚和加强筋间距可有效避开结构的辐射声压波峰. 关键词: 均匀流 第一阶剪切变形理论 层合板 波数变换  相似文献   

11.
In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concerned flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The validity of the present theory is investigated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories. It can be concluded that the proposed theory is accurate and simple in solving the static behavior of functionally graded plates.  相似文献   

12.
This paper is concerned with the influence of thickness shear deformation and rotatory inertia on the free vibrations of antisymmetric angle-ply laminated circular cylindrical panels. Two kinds of thickness shear deformable shell theories are considered. In the first one, uniformly distributed thickness shear strains through the shell thickness and, therefore, thickness shear correction factors are used. In the second theory a parabolic variation of thickness shear strains and stresses with zero values at the inner and outer shell surfaces is assumed. The analysis is mainly based on Love's approximations but, for purposes of comparison, Donnell's shallow shell approximations are also considered. For a simply supported panel, the equations of motion of the aforementioned theories, as well as of the corresponding classical theories, are solved by using Galerkin's method. For a family of graphite-epoxy angle-ply laminated plates and circular cylindrical panels, numerical results are obtained, compared and discussed and some interesting conclusions are made regarding the shell theories considered as well as the mathematical method employed.  相似文献   

13.
This paper presents exact solutions for free vibration of rectangular cross-ply laminated plates with at least one pair of opposite edges simply supported using refined kinematic theories of variable order. Exact natural frequencies are obtained using an efficient and unified formulation where the solving set of second-order differential equations of motion and related boundary conditions are expressed at layer level in terms of so-called fundamental nuclei having invariant properties with respect to the order of the plate theory. The nuclei are then appropriately expanded according to the number of layers and the order of the theory and the resulting equations are transformed into a first-order model whose solution is obtained by using the state space concept. In this way, the mathematical effort needed to derive analytical solutions is highly reduced. Both higher-order equivalent single-layer and layer-wise theories are considered in this study. Comparisons with other exact solutions are presented and useful benchmark frequency results for symmetric and un-symmetric cross-ply laminates are provided.  相似文献   

14.
An investigation of the natural vibrations of isotropic annular plates of uniform thickness has been made by considering the effects of rotatory inertia and shear deformation. The frequency determinantal equations are derived in explicit form for nine sets of common boundary conditions. Numerical results for the frequency parameters of annular plates having various thickness ratios and inner to outer radii ratios have been obtained. The results are compared with those given by the classical plate theory wherever possible. Among the effects of transverse shear deformation and rotatory inertia, the effect of shear deformation has been found to be more prominent.  相似文献   

15.
The geometrically non-linear free vibration of thin composite laminated plates is investigated by using a theoretical model based on Hamilton's principle and spectral analysis previously applied to obtain the non-linear mode shapes and resonance frequencies of thin straight structures, such as beams, plates and shells (Benamar et al. 1991Journal of Sound and Vibration149 , 179-195; 1993, 164, 295-316; 1990 Proceedings of the Fourth International Conference on Recent Advances in Structural Dynamics, Southampton; Moussaoui et al. 2000 Journal of Sound and Vibration232, 917-943 [1-4]). The von Kármán non-linear strain-displacement relationships have been employed. In the formulation, the transverse displacement W of the plate mid-plane has been taken into account and the in-plane displacements U and V have been neglected in the non-linear strain energy expressions. This assumption, quite often made in the literature has been adopted in reference [2] and (El Kadiri et al. 1999 Journal of Sound and Vibration228, 333-358 [5]), in the isotropic case and has been mentioned here because the results obtained have been found to be in very good agreement with those based on the hierarchical finite element method (HFEM). In a previous study, it was assumed, based on the analogy with the isotropic case, that the fundamental carbon fibre reinforced plastic (CFRP) plate non-linear mode shape could be well estimated, by using nine plate functions, obtained as products of clamped-clamped beam functions in the x and y directions, symmetric in both the length U001and width directions [3]. In the present work, a convergence study has been performed and has shown that, although such an assumption may yield a good estimate for the non-linear resonance frequency, 18 plate functions should be taken into account instead of nine in the first non-linear mode shape and associated bending stress patterns calculations. This allows the anisotropy induced by the fibre orientations to be taken into account. Results are given for the fundamental mode of fully clamped CFRP rectangular plates, for various plate aspect ratios and vibration amplitudes. The non-linear mode shows a higher bending stress near the clamps at large deflection, compared with that predicted by linear theory. Some experimental measurements are presented which are in good qualitative agreement with the theory.  相似文献   

16.
The finite element method is extended to the free vibration analysis of laminated thick plates with curved boundaries. Two elements are developed on the basis of Mindlin's thick plate theory in which the effects of thickness-shear deformation and rotary inertia are included. Both elements are derived in polar co-ordinates and can be joined together to handle annular as well as circular laminated anisotropic plate problems. Since axisymmetry has not been assumed, variations in material properties in the tangential direction can be dealt with. Numerical results are presented to demonstrate the influence of geometrical shape as well as that of thickness-shear deformation on the free vibrations of both homogeneous and layered plates. Comparisons between the numerical results obtained and those presented by other investigators confirm the accuracy of the new elements. The elements also can be used in the analysis of rectangular plates by assuming very large radii and very small subtended angle values.  相似文献   

17.
The geometrically nonlinear vibrations of linear elastic and isotropic plates under the combined effect of thermal fields and mechanical excitations are analysed. With this purpose, a model based on a p-version, hierarchical, first-order shear deformation finite element is employed. The equations of motion are solved in the time domain by Newmark's implicit time integration method. The temperature and the amplitude of the mechanical excitation are varied, and transitions from periodic to non-periodic motions are found.  相似文献   

18.
This paper deals with the free vibration behavior of laminated transversely isotropic circular plates with axisymmetric rigid core attached at the center. The governing equations of motion are obtained based on Mindlin's first-order shear deformation plate theory. Two possible categories of vibration modes related to up-down translation of the core and wobbly rotation of the core about a diameter are studied. Accurate natural frequencies hitherto not reported in the literature are presented for a wide range of thickness-to-radius ratio, inner-to-outer radius ratio, mass and moment of inertia ratios of the core and various boundary conditions at the outer edge of the plate. Numerical results are compared with those of a three-dimensional finite element method (3-D FEM) to demonstrate the high accuracy and reliability of the current analysis.  相似文献   

19.
Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号