首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.  相似文献   

2.
A new ZnTe modified TiO2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO2 NT while without clogging the tube entrances. Compared with the unmodified TiO2 NT, the ZnTe modified TiO2 NT (ZnTe/TiO2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO2 NT with the ZnTe NPs prepared under the pulsed “on” potentials of −0.8, −1.0, and −2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe.  相似文献   

3.
Novel electrocatalysts Au/TiO2 nanotube arrays (Au/TiO2NTs) were prepared by loading low-content(1.9 at.%) of Au nanoparticles (AuNPs) onto highly ordered TiO2 nanotube arrays (TiO2NTs). Ethanol electrooxidation indicates that visible-light (λ > 400 nm) irradiation can significantly enhance the activity as well as resistpoisoning of Au/TiO2NTs electrocatalysts that are activated by plasmon resonance. Au/TiO2NTs catalysts calcinated at 300 °C display the highest performance due to the strong synergistic interactions between TiO2 and Au NPs. The combination of visible-light irradiation with a controllable potential offers a new strategyfor enhancing the performance of anodes in direct ethanol fuel cell (DEFC).  相似文献   

4.
Based on the unique absorbent characters and three-dimensional network structure of polyacrylamide (PAM) superabsorbent polymer, a photocatalytic degradable TiO2/PAM composite was synthesized by an aqueous solution polymerization method with N,N′-methylene bisacrylamide as crosslinker, potassium peroxydisulfate as initiator, acrylamide as monomer, and TiO2 (P-25) as functional filler. The photocatalytic degradability of the composite was evaluated using methyl orange as photodegradation target, and the recovery and reproducibility of the composite was investigated. It was found that TiO2/PAM composite had a good photocatalytic degradability, the composite also possessed a good reproducibility of photocatalytic degradability, which is possible to be used in practical process.  相似文献   

5.
Hierarchically structured TiO2 (HST) films composed of top porous nanoparticle layer and underneath nanotube array layer are obtained by an anodization method on fluorine doped tin oxide surfaces. Compared with the TiO2 nanotube arrays photoanode on Ti substrate, the HST photoanode exhibits a higher photoelectrocatalytic activity towards the oxidation of water and organics (e.g., glucose).  相似文献   

6.
TiO2–carbon nanotube (CNT) heterojunction arrays on Ti substrate were fabricated by a two-step thermal chemical vapor deposition (CVD) method. CNT arrays were first grown on Ti substrate vertically, and then a TiO2 layer, whose thickness could be controlled by varying the deposition time, was deposited on CNTs. Measured by electrochemical impedance spectroscopy (EIS), the thickness of the TiO2 layer could affect the photoresponse ability significantly. About 100 nm thickness of the TiO2 layer proved to be best for efficient charge separation among the tested samples. The optimized TiO2–CNT heterojunction arrays displayed apparently higher photoresponse capability than that of TiO2 nanotube arrays which was confirmed by surface photovoltage (SPV) technique based on Kelvin probe and EIS. In the photocatalytic experiments, the kinetic constants of phenol degradation with TiO2–CNT heterojunctions and TiO2 nanotubes were 0.75 h−1 (R2 = 0.983) and 0.39 h−1 (R2 = 0.995), respectively. At the same time, 53.7% of total organic carbon (TOC) was removed with TiO2–CNT heterojunctions, while the removal of TOC was only 16.7% with TiO2 nanotubes. These results demonstrate the super capability of the TiO2–CNT heterojunction arrays in photocatalysis with comparison to TiO2-only nanomaterial.  相似文献   

7.
Sb2S3/Bi2S3 doped TiO2 were prepared with the coordination compounds [M(S2CNEt)3] (M=Sb, Bi; S2CNEt=pyrrolidinedithiocarbamate) as precursors via gel-hydrothermal techniques. The doped TiO2 were characterized by XRD, SEM, XPS and UV-vis diffuse reflectance means. The photocatalyst based on doped TiO2 for photodecolorization of 4-nitrophenol (4-NP) was examined. The optimal Bi2S3/Sb2S3 content, pH and different doped techniques have been investigated. Photocatalytic tests reveal that M2S3 doped TiO2 via the gel-hydrothermal route performs better photocatalytic activity for photodegradation reaction of 4-nitrophenol (4-NP).  相似文献   

8.
The formation of hollow binary ZrO2/TiO2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO2 and tetragonal phase of ZrO2, and the introduction of ZrO2 notably inhibits the growth of TiO2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO2/TiO2 fibers exhibit higher surface areas (>113 m2/g) than pure TiO2 hollow fibers. The Pyridine adsorption on ZrO2/TiO2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.  相似文献   

9.
MWCNT/TiO2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO2 was 20%, MWCNT/TiO2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO2 nanostructures at 400 °C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue.  相似文献   

10.
二氧化钛因其在光催化、染料敏化太阳电池、生物医药等应用领域表现出优异性能而成为材料科学领域重点研究的化合物之一。本文介绍了近年来阳极氧化法制备不同形貌的TiO2纳米管(TiO2NTs)阵列,探讨了电解液、阳极氧化时间、电压三个因素对TiO2纳米管形貌的影响,综述了掺杂、复合、表面修饰这三种能对TiO2纳米管进行化学或物理修饰的改性手段以及改性后的TiO2纳米管阵列在光催化、太阳能电池、生物医学、传感等领域的应用研究进展。最后,指出国内外针对二氧化钛纳米管阵列研究现状所存在的问题,并对今后的研究工作提出了展望。  相似文献   

11.
温度控制TiO2纳米管及管/线复合阵列的制备   总被引:1,自引:0,他引:1  
以含有NH4F的乙二醇溶液为电解液,在宽温度范围内(10~70℃)对纯Ti表面进行阳极氧化,制得形貌可控的TiO2纳米结构。利用场发射扫描电子显微镜(FESEM)和透射电镜(TEM)对纳米TiO2的形貌进行表征。结果表明,随着电解液温度的变化,纳米TiO2的形貌得到控制,可形成TiO2纳米管阵列及纳米管阵列/纳米线复合结构,温度40~50℃为转折温区。  相似文献   

12.
Visible-light-responsive composite photocatalysts SnS2/TiO2 and SnS/TiO2 with different mass ratios were prepared by in-situ synthesis technology in solution with commercial TiO2. The junction-based materials SnSx (x=1, 2)/TiO2 were found to have high visible-light photocatalytic performance and possess much better activity than the single-phase SnSx or TiO2. The greatly enhanced photocatalytic activity of the SnSx/TiO2 composites was mainly attributed to the matching band potentials and efficient charge transfer and separation at the tight-bonding interface between SnSx and TiO2. The fact was confirmed by the comparison of photocatalytic activities of the SnS2/TiO2 samples prepared by physical mixing method and in-situ synthesis technique.  相似文献   

13.
郝彦忠  王利刚 《无机化学学报》2007,23(12):2039-2043
利用在钛箔表面沉积一层TiO2纳米粒子作为晶种,与NaOH反应,制备了一维物质TiO2纳米线。并用XRD、SEM、TEM、HRTEM及EDS等分析手段对TiO2纳米线的成分、形貌、结构进行表征。结果表明,采用该方法制得的TiO2纳米线直径在20~50 nm左右、长度可达几微米。反应温度能显著影响所得纳米线的形貌。研究了TiO2纳米线的光电化学性能。随反应温度的升高TiO2纳米线光电转换效率增大。  相似文献   

14.
TiO2 nanoparticles incorporated with CuInS2 clusters were prepared in a solvothermal process and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersion X-ray analysis (EDX). Compared with pure TiO2 nanoparticles, the TiO2 nanoparticles incorporated with CuInS2 clusters display higher photocatalytic activity with 99.9% of degradation ratio of 4-nitrophenol after 2 h irradiation. In order to investigate the effect of the CuInS2 clusters on the photocatalytic activity of TiO2 nanoparticles, diffuse reflectance UV–Vis spectra (DRS), photoluminescence (PL) spectra, and photocurrent action spectra were measured. The results indicate that the enhanced photocatalytic activity is probably due to the interface between TiO2 and CuInS2 as a trap of the photogenerated electrons to decrease the recombination of electrons and holes.  相似文献   

15.
Nanosized TiO2/SiO2 catalysts prepared by hydrolysis of titanium n-butoxide in microemulsion showed enhanced photocatalytic activity. In the presence of catalyst ME-2 and after 90 min irradiation by UV light, methylene blue was completely converted evidenced by the absence of its absorption band in the UV-Vis spectra. This catalyst demonstrated much better degradation ability than P-25 and naked TiO2.  相似文献   

16.
Nitrogen-doped TiO2 catalysts were prepared by a precipitation method. The samples were calcined at 400 °C for 4 h in air. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low temperature N2-adsorption was used for structural characterization and UV-diffuse reflectance (UV-DR) was applied to investigate the optical properties of the as-prepared samples. It was found that microporous N-doped catalysts have solely anatase crystalline structure. Acidic treatment of the calcined samples was performed using sulfuric acid agitation. The crystalline structure remained unchanged due to surface treatment, while the porosity and the surface areas were decreased dramatically. Optical characterization of the doped catalysts showed that they could be excited by visible light photons in the 400–500 nm wavelength range (λg,1=390 nm, λg,2=510 nm). It was also established that surface treatment enhances the Vis-light absorption of the N-TiO2 powders. Finally the catalysts were tested in the photocatalytic degradation of phenol in aqueous suspensions. Two different light sources were used; one of them was a UV-rich high pressure Hg-lamp, while the other was a tubular visible light source. We found that using visible light illumination N-doped, acid treated TiO2 samples were more catalytically active than non-doped TiO2 catalysts.  相似文献   

17.
Nitrogen doped TiO2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO2 prepared via sol-gel synthesis. Nitrogen doping does not affect the valence band to conduction band separation but, generates intra band gap localized states which are responsible of the on set of visible light absorption. The intra band gap states correspond to a nitrogen containing defect similar but not coincident with that recently reported for N doped anatase.  相似文献   

18.
本文综述了制备TiO2薄膜的各种方法,详细介绍了阳极氧化法制备TiO2多孔膜的进展,在非含氟电解液体系中,对纯钛进行阳极氧化处理可制得表面呈无规则生长的多孔膜结构;在含氟电解液体系中,则可自组织形成高度有序的TiO2纳米管阵列,并指出阳极氧化法是可在常温低压下进行、操作工艺简单、薄膜性能稳定、再现性好的一种最具工业化应用潜力的制备方法。  相似文献   

19.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   

20.
A novel photocatalytic polyacrylamide grafted TiO2 (PAM-g-TiO2) nanocomposite was prepared and embedded into a low density polyethylene (LDPE) plastic. Photocatalytic degradation of the LDPE/PAM-g-TiO2 composite film was carried out under ambient conditions under ultraviolet light irradiation. The properties of composite film were compared with those of the pure LDPE film by measuring the changes in weight loss, carbonyl index, molecular weight, tensile strength and elongation at break. PAM-g-TiO2 embedded LDPE showed highly enhanced photocatalytic degradation. Irradiating the LDPE/PAM-g-TiO2 composite film for 520 h under UV light reduced its weight by 39.85% and average molecular weight (Mw) by 94.60%, while that of pure LDPE film was only 1.03% and 69.59%, respectively. The addition of PAM-g-TiO2 brought about the good dispersion of TiO2 in LDPE matrix and improved the hydrophilicity of composite film, which were able to facilitate the degradation of LDPE. The photocatalytic degradation mechanism of the films is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号