首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A.K.M. Kafi 《Talanta》2009,79(1):97-37
We report on a novel amperometric biosensor for detecting phenolic compounds based on the co-immobilization of horseradish-peroxidase (HRP) and methylene blue (MB) with chitosan on Au-modified TiO2 nanotube arrays. The titania nanotube arrays were directly grown on a Ti substrate using anodic oxidation first; a gold thin film was then coated onto the TiO2 nanotubes by an argon plasma technique. The morphology and composition of the fabricated Au-modified TiO2 nanotube arrays were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Cyclic voltammetry and amperometry were used to study the proposed electrochemical biosensor. The effect of pH, applied electrode potential and the concentration of H2O2 on the sensitivity of the biosensor have been systemically investigated. The performance of the proposed biosensor was tested using seven different phenolic compounds, showing very high sensitivity; in particular, the linearity of the biosensor for the detection of 3-nitrophenol was observed from 3 × 10−7 to 1.2 × 10−4 M with a detection limit of 9 × 10−8 M (based on the S/N = 3).  相似文献   

2.
In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.  相似文献   

3.
Ag-SrTiO3 nanotube arrays were successfully prepared for the degradation of methyl orange (MO) under ultraviolet irradiation. In order to form highly ordered SrTiO3 nanotube arrays, the preparation of TiO2 nanotube arrays by anodic oxidation of titanium foil in different electrolytes was investigated. The selected organic solvents in electrolytes include glycerol, dimethyl sulfoxide and glycol. The results indicate that the morphology of TiO2 nanotube arrays prepared in glycol containing ammonium fluoride electrolyte is more regular. Then SrTiO3 nanotube arrays were synthesized by a hydrothermal method using TiO2 nanotube arrays as the precursor. In order to further improve the photocatalytic activity of SrTiO3 nanotube arrays, Ag nanoparticles were loaded on SrTiO3 nanotube arrays by two sets of experiments. The loaded Ag results in an enhancement of photocatalytic activity of SrTiO3 nanotube arrays. Moreover, the effect of pH on the photocatalytic degradation of MO was also studied.  相似文献   

4.
In this study, the characterization and photocatalytic activity of TiO2 nanotube arrays prepared by anodization process with starch addition were investigated in detail. The results suggested that the optimum mass fraction of starch added in anodization process was 0.1%, with which TiO2 nanotube arrays owning good tubular structure were synthesized. The tube length and average inner diameter of nanotubes were approximately 4 μm and 30 nm, respectively. Through the characterization of TiO2 nanotube arrays by energy dispersive spectrometer, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Fourier Transform Infrared (FTIR) spectroscopy, it was found that the as‐prepared nanotubes possessed well uniformed and higher photodegradation responsive than the pure TiO2. Moreover, it was expected that the as‐prepared nanotubes exhibited good photocatalytic activity for the degradation of RhB under UV‐light irradiation, which could be ascribed to their good morphology, enhanced UV‐light absorption property and electron transmission ability during the photocatalytic reaction. In addition, the nanotubes were not significantly regenerated during the cycling runs experiment. Overall, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity by anodization process with starch addition for environmental purification.  相似文献   

5.
N‐doped TiO2 nanotubes with high photocatalytic activity were prepared by the combination of sol‐gel process with hydrothermal treatment. The prepared materials are characterized with transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), x‐ray diffraction (XRD), x‐ray photoelectron spectra (XPS), and UV‐vis spectra. Photocatalytic performance of the N‐doped TiO2 nanotubes is studied by testing the degradation rate of methyl orange under UV irradiation. Obtained results indicate that N‐doped TiO2 nanotubes have high catalytic activity for photocatalytic oxidation.  相似文献   

6.
Guangmei Guo  Ping Yu 《Talanta》2009,79(3):570-575
TiO2- and Ag/TiO2-nanotubes (NTs) were synthesized by hydrothermal methods and microwave-assisted preparation, respectively. Scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller particle surface area measurement and X-ray diffraction were used to characterize the nanotubes. Rutile TiO2-NTs with Na2Ti5O11 crystallinity had a length range of 200-400 nm and diameters of 10-20 nm. TiO2- and Ag/TiO2-NTs with a 0.4% deposition of Ag had high surface areas of 270 and 169 m2 g−1, respectively. The evaluation of photocatalytic activity showed that Ag/TiO2-NTs displayed higher photocatalytic activity than pure TiO2-NTs and a 60.91% degradation of Rhodamine-B with 0.8% deposition of Ag species. Also 60% of Rhodamine-6G was physisorbed and 40% chemisorbed on the surface of TiO2-NTs. In addition, the photocatalytic degradations of organochlorine pesticides taking α-hexachlorobenzene (BHC) and dicofol as typical examples, were compared using Ag/TiO2-NTs, and found that their degradations rates were all higher than those obtained from commercial TiO2.  相似文献   

7.
Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag deposits obtained by the sputter deposition technique where the amount of Ag varied from 0.01 to 0.2 mg Ag/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO2 nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the Ag-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag substrate were also measured.The SERS activity of the composite samples was strongly dependent on the amount of Ag deposit. At and above 0.06 mg Ag/cm2, the SERS signal was even higher than that for the Ag reference substrate. The high activity of the composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology made it possible to monitor very small temporal changes in the Ag clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods.  相似文献   

8.
TiO2–carbon nanotube (CNT) heterojunction arrays on Ti substrate were fabricated by a two-step thermal chemical vapor deposition (CVD) method. CNT arrays were first grown on Ti substrate vertically, and then a TiO2 layer, whose thickness could be controlled by varying the deposition time, was deposited on CNTs. Measured by electrochemical impedance spectroscopy (EIS), the thickness of the TiO2 layer could affect the photoresponse ability significantly. About 100 nm thickness of the TiO2 layer proved to be best for efficient charge separation among the tested samples. The optimized TiO2–CNT heterojunction arrays displayed apparently higher photoresponse capability than that of TiO2 nanotube arrays which was confirmed by surface photovoltage (SPV) technique based on Kelvin probe and EIS. In the photocatalytic experiments, the kinetic constants of phenol degradation with TiO2–CNT heterojunctions and TiO2 nanotubes were 0.75 h−1 (R2 = 0.983) and 0.39 h−1 (R2 = 0.995), respectively. At the same time, 53.7% of total organic carbon (TOC) was removed with TiO2–CNT heterojunctions, while the removal of TOC was only 16.7% with TiO2 nanotubes. These results demonstrate the super capability of the TiO2–CNT heterojunction arrays in photocatalysis with comparison to TiO2-only nanomaterial.  相似文献   

9.
A new ZnTe modified TiO2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO2 NT while without clogging the tube entrances. Compared with the unmodified TiO2 NT, the ZnTe modified TiO2 NT (ZnTe/TiO2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO2 NT with the ZnTe NPs prepared under the pulsed “on” potentials of −0.8, −1.0, and −2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe.  相似文献   

10.
庄惠芳  赖跃坤  李静  孙岚  林昌健 《化学学报》2007,65(21):2363-2369
采用电化学阳极氧化法在钛表面构筑了一种结构有序、微米级的TiO2纳米管阵列膜层. 考察了制备电压、氧化时间、溶液搅拌等实验参数对TiO2纳米管阵列形貌和尺寸的影响. 应用SEM和XRD对膜层的形貌和晶型进行了分析和表征, 并通过TiO2纳米管阵列膜对甲基橙的光催化降解, 研究了TiO2纳米管阵列膜层结构与光催化活性的关系. 结果表明: 阳极电压和溶液搅拌对制备TiO2纳米管阵列的结构起到关键的作用. 控制20 V电压制备的TiO2纳米管阵列膜, 管长达2.6~3.3 μm, 经500 ℃热处理后具有最高的光催化活性, 其光催化性能明显优于一般的TiO2纳米颗粒膜.  相似文献   

11.
Fe_2O_3/TiO_2纳米管阵列的制备及其光催化性能   总被引:2,自引:0,他引:2  
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒。利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能。结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍。而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%。  相似文献   

12.
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒.利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能.结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍.而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%.  相似文献   

13.
Bi‐doped TiO2 nanotubes with variable Bi/Ti ratios were synthesized by hydrothermal treatment in 10 mol·L?1 NaOH (aq.) through using Bi‐doped TiO2 particles derived from conventional sol‐gel method as starting materials. The effects of Bi content on the morphology, textural properties, photo absorption and photocatalytic activity of TiO2 nanotubes were investigated. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) observations of the obtained samples revealed the formation of titanate nanotube structure doped with Bi, which exists as a higher oxidation state than Bi3+. Bi‐doping TiO2 nanotubes exhibited an extension of light absorption into the visible region and improved photocatalytic activities for hydrogen production from a glycerol/water mixed solution as compared with pure TiO2 nanotubes. There was an optimal Bi‐doped content for the photocatalytic hydrogen production, and high content of Bi would retard the phase transition of titanate to anatase and result in morphology change from nanotube to nanobelt, which in turn decreases the photocatlytic activity for hydrogen evolution.  相似文献   

14.
本工作采用CVD法在阳极氧化TiO2纳米管阵列膜表面沉积一层非晶Si膜,通过退火后得到晶化了的Si膜/TiO2纳米管阵列的复合结构,并初步就其光催化还原CO2制备碳氢化合物的活性进行研究。拉曼光谱(Raman)、X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、高分辨透射电子显微镜(TEM)等微结构表征结果表明所制备的TiO2纳米管阵列的厚度为270 nm左右,管直径约为70 nm,管壁厚度约为16 nm。覆盖的Si膜已晶化,其厚度约为300 nm。通过高效液相色谱(HPLC)及总有机碳(TOC)来检测光催化还原液相产物中的甲酸及总有机碳含量,发现负载Si膜后的TiO2纳米管阵列光催化性能有所提高,在装有400cut滤光片氙灯照射2 h下TOC含量从21.2 mg.L-1增长到29.5 mg.L-1,表明Si与TiO2的复合可有效的提高光催化还原CO2的活性,这可能与该异质结结构可增加对光的吸收并且可降低光生空穴-电子对复合有关。光催化循环实验表明所制得的催化剂在循环5次后仍可保持91.6%的催化活性。  相似文献   

15.
16.
Titanium dioxide (TiO2), co-deposited with Fe and N, is first implanted with Fe by a metal plasma ion implantation (MPII) process and then annealed in N2 atmosphere at a temperature regime of 400-600 °C. First-principle calculations show that the (Fe, N) co-deposited TiO2 films produced additional band gap levels at the bottom of the conduction band (CB) and on the top of the valence band (VB). The (Fe, N) co-deposited TiO2 films were effective in both prohibiting electron-hole recombination and generating additional Fe-O and N-Ti-O impurity levels for the TiO2 band gap. The (Fe, N) co-deposited TiO2 has a narrower band gap of 1.97 eV than Fe-implanted TiO2 (3.14 eV) and N-doped TiO2 (2.16 eV). A significant reduction of TiO2 band gap energy from 3.22 to 1.97 eV was achieved, which resulted in the extension of photocatalytic activity of TiO2 from UV to Vis regime. The photocatalytic activity and removal rate were approximately two-fold higher than that of the Fe-implanted TiO2 under visible light irradiation.  相似文献   

17.
Anatase-type TiO2 doped with 4.7 and 12.4 mol% ZrO2 that were directly precipitated as nanometer-sized particles from acidic precursor solutions of TiOSO4 and Zr(SO4)2 by simultaneous hydrolysis under hydrothermal conditions at 200°C, showed higher photocatalytic activity than pure anatase-type TiO2 for the decomposition of methylene blue. The crystallite growth and the phase transformation from anatase-type to rutile-type structure caused by heating at high temperature were retarded by doping ZrO2 into TiO2. The anatase-type TiO2 doped with ZrO2 showed high phase stability and maintained anatase-type structure even after heating at 1000°C for 1 h.  相似文献   

18.
本文采用电化学阳极氧化法以含氟的甘油和水混合溶液为电解液在纯钛表面制备了一层排列规整的TiO2纳米管阵列,研究了电解液中额外添加3种2价阴离子、不同的电解时间及不同的添加物浓度等因素对所获得的TiO2纳米管阵列形貌的影响。结果表明,在改性电解液中制备的TiO2纳米管阵列的长度均超过了未改性的电解液中制备的,并随着氧化时间的增长,纳米管管口直径增大,管壁变薄;同时添加的(NH4)2TiF6浓度在0.025~0.1 mol.L-1范围内均可获得管长更长且形貌较好的TiO2纳米管阵列。  相似文献   

19.
Graphene is a good adsorbent for organic pollutants, especially for compounds containing benzene rings. When used in TiO2 nanotube arrays for micro-solid phase extraction (μ-SPE), the combination of graphene’s strong adsorptive properties with its good separation capabilities results in excellent sample preconcentration performance. In the present study, graphene-modified TiO2 nanotube arrays were prepared by electrodeposition using a cyclic voltammetric reduction method. Four carbamate pesticides, including metolcarb, carbaryl, isoprocarb, and diethofencarb, were used as model analytes to validate the enrichment properties of the prepared adsorbent in μ-SPE. Factors affecting the enrichment efficiency of the μ-SPE procedure were optimized and included sample pH, elution solvents, salting-out effect, adsorption time and desorption time. Under optimal conditions, graphene-modified TiO2 nanotube arrays exhibited excellent enrichment efficiency for carbamate pesticides. The detection limits of these carbamate pesticides ranged from 2.27 to 3.26 μg L−1. The proposed method was validated using four environmental water samples, and yields of pesticides recovered from spiked test samples of the four analytes were in the range of 83.9–108.8%. These results indicate that graphene-modified TiO2 nanotube arrays exhibit good adsorption to the target pollutants, and the method described in this work could be used as a faster and easier alternative procedure for routine analysis of carbamate pesticides in real water samples.  相似文献   

20.
In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 °C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of –1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm-2) compared to the undoped TiO2 nanotube arrays (0.19 mA cm-2). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号