首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A point source of variable intensity located at rest in a plane infinitely deep fluid layer under an ice cover is considered. The general expression for perturbations of the fluid-ice interface is obtained. In the case of the long operation in the pulsating regime the wave established on the ice cover is found.  相似文献   

2.
The plane problem of the small steady-state oscillations of a horizontal cylinder arbitrarily located in a three-layer fluid whose upper and lower layers are homogeneous and whose middle layer is linearly stratified is considered in the linear formulation using the Boussinesq approximation. The fluid is assumed to be ideal and incompressible. The method of mass sources distributed along the body contour is used in the internal wave generation regime and an integral equation for the fluid pressure is derived in the non-wave regime. The hydrodynamic load acting on the body is calculated as a function of the oscillation frequency of the cylinder and its location. The results are compared with experimental data.  相似文献   

3.
The linear plane problem of oscillations of an elliptic cylinder in an ideal incompressible fluid of finite depth in the presence of an ice cover of finite length is solved. The ice cover is modeled by an elastic plate of constant thickness. The hydrodynamic loads acting on the body are determined as functions of the oscillation frequency and the positions of the cylinder and plate.  相似文献   

4.
Hao  L. Z.  Pan  Z. Y. 《Fluid Dynamics》2022,56(1):S70-S87

This paper presents the three-dimensional Green-function method to predict the radiation and diffraction of water waves by a submerged body in water of uniform finite depth with an ice cover. The fluid is assumed to be perfect and irrotational, the ice is modelled as an elastic plate. The zero-speed Green function of finite depth satisfying the linearized covered-surface condition is derived in three dimensions, the numerical results for the Green function and its derivatives are given. The integral equations are established by distributing the source strength on the body surface, the radiation and diffraction problems are solved. A submerged sphere is taken as an example, the effects of the water depth and the flexural rigidity of ice cover on hydrodynamics are analysed, and the good agreement with the analytical solutions reveals that the present method is correct and reliable.

  相似文献   

5.
This paper presents the solution of the linear hydroelastic problem for steady forced vibrations of a semi-infinite ice cover under the effect of localized external load. The ice cover is simulated by a viscoelastic thin plate, the thickness of the fluid layer is assumed to be small, and the shallow water theory is used. The fluid is limited by a solid vertical wall, and the rectilinear edge of the elastic plate adjacent to the wall can be both free and clamped. The solution is obtained with the help of the Fourier integral transform. The behavior of the ice cover is studied depending on the frequency of the external load and boundary conditions on the edge of the plate. It is shown that, in the case of a free edge of the plate, there are considerable deflections on the edge, which could be comparable with deflections at the center of the pressure impact region. It is established that, due to the existence of wave movements of the type of edge waves, the external load energy is transferred to larger distances along the free edge, and there are significant bending moments on the edge of the clamped plate, which can lead to fracture of the ice cover with sufficiently great intensity of the external load.  相似文献   

6.
A family of plane solitary wave packets of a small (but finite) amplitude on the surface of an ideal incompressible fluid of finite depth beneath an ice cover is described. The solitary wave trains correspond to solutions of the two-dimensional system of Euler’s equations of an ideal incompressible fluid of the type of a traveling wave which decreases at infinity and has identical phase and group velocities. The ice cover is simulated by an elastic Kirchhoff-Love plate freely floating on the fluid surface in the compressed state.  相似文献   

7.
In the present paper a method is proposed to investigate the effects of a rigid internal body on the coupled vibration of a partially fluid-filled cylindrical container. The internal body is a thin-walled and open-ended cylindrical shell. The internal body is concentrically and partially submerged inside a container. The radial and axial distances between the internal body and the container are filled with fluid. Along the contact surface between the container and the fluid, the compatibility requirement for the fluid–structure interactions is applied and the Rayleigh–Ritz method is used to calculate the natural frequencies and modes of a partially fluid-filled cylindrical container. The fluid domain is continuous, simply connected, and non-convex. The fluid is assumed to be incompressible and inviscid. The velocity potential for fluid motion is formulated in terms of eigenfunction expansions for two distinct fluid regions. The resulting equations are solved by using the Galerkin method. The results from the proposed method are in good agreement with experimental and numerical solutions available in the literature for the partially water-filled cylindrical container without internal body. A finite element analysis is also used to check the validity of the present method for the partially water-filled cylindrical container with internal body. The effects of the fluid level, internal body radius, and internal body length on the natural frequencies of the coupled system are also investigated.  相似文献   

8.
This paper consideres the behavior of a semi-infinite ice cover on the surface of an ideal incompressible fluid of finite depth under the action of a load moving with constant velocity along the edge of the cover at some distance from it. The ice cover is modeled by a thin elastic plate of constant thickness. In a moving coordinate system, the deflection of the plate is assumed to be steady. An analytic solution of the problem is obtained using the Wiener–Hopf technique. The wave forces, the deflection of the plate, and the elevation of the free surface of the fluid at different velocities of the load are investigated.  相似文献   

9.
The three-dimensional problem of steady-state forced vibrations of fluid and semiinfinite ice sheet under the action of a local external load traveling along the rectilinear sheet edge at a constant velocity is considered. Two cases are analyzed. In the first case the fluid surface outside the ice sheet is free and in the second the fluid is confined by a rigid vertical wall and the ice sheet edge adjacent to the wall can be both clamped and free. The ice sheet is simulated by a thin elastic isotropic plate floating on the surface of fluid of finite depth. The load traveling velocity is assumed to be not higher than the minimum phase velocity of the flexural-gravity waves (subcritical regime). The solution to the linear problem is obtained by means of the integral Fourier transform and matching the expansions of the velocity potential in the vertical eigenfunctions. Examples of the numerical investigation of the ice sheet and fluid displacements are given.  相似文献   

10.
An analytical method is developed to consider the free vibration of an elastic bottom plate of a partially fluid-filled cylindrical rigid container with an internal body. The internal body is a rigid cylindrical block that is concentrically and partially submerged inside the container. The developed method captured the analytical features of the velocity potential in a non-convex, continuous, and simply connected fluid domain including the interaction between the fluid and the structure. The interaction between the fluid and the bottom plate is included. The Galerkin method is used for matching the velocity potentials appropriate to two distinct fluid regions across the common horizontal boundary (artificial horizontal boundary). Then, the Rayleigh–Ritz method is also used to calculate the natural frequencies and modes of the bottom plate of the container. The results obtained for the problem without internal body are in close agreement with both experimental and numerical results available in the articles. A finite element analysis is also used to check the validity of the present method in the presence of the internal body. Furthermore, the influences of various variables such as fluid level, internal body radius, internal body length, and the number of nodal diameters and circles on the dynamic behaviour of the coupled system are investigated.  相似文献   

11.
The problem of the interaction of surface and flexural-gravity waves with a vertical barrier is solved in a two-dimensional formulation. It is assumed that the fluid is ideal and incompressible, has infinite depth, and is partially covered with ice. The ice cover is modeled by an elastic plate of constant thickness. The eigenfrequencies and eigenmodes of oscillation of the floating elastic ice plate, the deflection and deformation of ice, and the forces acting on the wall are determined.  相似文献   

12.
The development of three-dimensional waves generated by a region of pressures moving uniformly and rectilinearly over the surface of a thin elastic isotropic plate covering an ideal fluid layer of finite depth is investigated. The pressures act starting at a certain instant. A qualitative similarity between the waves occurring and gravity-capillary waves is noted. The calculations are made for an ice cover. This model problem permits examining a number of properties of the oscillations of the ice cover occurring when hauling freight over ice roads, landing and takeoff of aircraft from ice fields, etc. [1]. The development of ship waves in a fluid of finite depth in the absence of a floating plate was investigated in [2, 3] and gravity-capillary waves were studied in [4–6]. Certain properties of steady three-dimensional waves occurring during movement of a load over the surface of a floating elastic plate were established in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 26–32, September–October, 1978.  相似文献   

13.
This paper describes a numerical model for analyzing the stress-strain state of ice cover which has fractures of various widths caused by hydrodynamic loads due to submarine motion. Calculations and experiments were performed using the model of unbreakable ice, and the results were used to obtain dependences of the amplitude of deflections and stress in ice cover on the width of the ice fracture. The behavior of ice cover under wave loading was studied.  相似文献   

14.
In polar oceans, seawater freezes to form a layer of sea ice of several metres thickness that can cover up to 8% of the Earth’s surface. The modelled sea ice cover state is described by thickness and orientational distribution of interlocking, anisotropic diamond-shaped ice floes delineated by slip lines, as supported by observation. The purpose of this study is to develop a set of equations describing the mean-field sea ice stresses that result from interactions between the ice floes and the evolution of the ice floe orientation, which are simple enough to be incorporated into a climate model. The sea ice stress caused by a deformation of the ice cover is determined by employing an existing kinematic model of ice floe motion, which enables us to calculate the forces acting on the ice floes due to crushing into and sliding past each other, and then by averaging over all possible floe orientations. We describe the orientational floe distribution with a structure tensor and propose an evolution equation for this tensor that accounts for rigid body rotation of the floes, their apparent re-orientation due to new slip line formation, and change of shape of the floes due to freezing and melting. The form of the evolution equation proposed is motivated by laboratory observations of sea ice failure under controlled conditions. Finally, we present simulations of the evolution of sea ice stress and floe orientation for several imposed flow types. Although evidence to test the simulations against is lacking, the simulations seem physically reasonable.  相似文献   

15.
Motion of a rigid or deformable solid in a viscous incompressible fluid and corresponding fluid–solid interactions are considered. Different cases of applying high frequency vibrations to the solid or to the surrounding fluid are treated. Simple formulas for the mean velocity of the solid are derived, under the assumption that the regime of the fluid flow induced by its motion is turbulent and the fluid resistance force is nonlinearly dependent on its velocity. It is shown that vibrations of a fluid’s volume slow down the motion of a submerged solid. This effect is much pronounced in the case of a deformable solid (i.e., gas bubble) exposed to near-resonant excitation. The results are relevant to the theory of gravitational enrichment of raw materials, and also contribute to the theory of controlled locomotion of a body with an internal oscillator in continuous deformable (solid or fluid) media.  相似文献   

16.
In northern countries, subfreezing temperatures during the winter season result in the formation of ice covers on most rivers. Towards the end of the winter season, during the spring break-up period, stationary ice covers become weak in strength and break up. The resulting broken ice pieces or ice floes are significantly larger in thickness and have a rougher undersurface relative to sheet ice and impose higher hydraulic resistance. The downstream movement of the ice floes may be arrested under conditions such as an intact ice cover, bridge piers or channel constrictions, among others, thereby initiating a break-up ice jam. These ice jams most often have been observed to cause very high water stages. Detrimental effects caused by these high water levels encompass those of operational and design-related problems such as the flooding of communities due to ice-jam-induced backwater, flood risk assessments, altering of the open water flow regime, bed scour and flooding of bridges. The ability to predict the influence of an ice jam on the main flow is of considerable importance in river engineering and can be viewed upon by its effects on the variation in the water surface levels. All other information is dependent on the foregoing. The ice jam influence on the main flow can be regarded with respect to local and global standpoints. The primary objective of this study is to formulate the influence of the ice jam on the main channel flow. The formulation is then coupled with a two-dimensional numerical model for the simulation of the water flow regime. The data from different laboratory experiments on ice jams are reproduced numerically. Various simulations are then carried out to compute the water surface levels and velocities in channels under ice jam conditions. The numerical results are then compared with the laboratory data. Results show that the mathematical formulation developed to predict the water surface levels and velocities along the ice jam length as well as upstream and downstream of its leading and trailing edges respectively gives satisfactory predictions.  相似文献   

17.
Journal of Applied Mechanics and Technical Physics - The problem of the motion of a sphere in an ideal incompressible fluid of infinite depth with an ice cover under nonuniform compression was...  相似文献   

18.
We consider the linear unsteady motion of an IL-76TD aircraft on ice. Water is treated as an ideal incompressible liquid, and the liquid motion is considered potential. Ice cover is modeled by an initially unstressed uniform isotropic elastic plate, and the load exerted by the aircraft on the ice cover with consideration of the wing lift is modeled by regions of distributed pressure of variable intensity, arranged under the aircraft landing gear. The effect of the thickness and elastic modulus of the ice plate, takeoff and landing regimes on stress-strain state of the ice cover used as a runway.  相似文献   

19.
Tkacheva  L. A. 《Fluid Dynamics》2022,57(2):173-182
Fluid Dynamics - The solution to the problem on the behavior of an ice cover on the surface of an ideal incompressible fluid of finite depth under a local pressure domain in the presence of a shear...  相似文献   

20.
Internal bodies (baffles) are used as damping devices to suppress the fluid sloshing motion in fluid-structure interaction systems. An analytical method is developed in the present article to investigate the effects of a rigid internal body on bulging and sloshing frequencies and modes of a cylindrical container partially filled with a fluid. The internal body is a thin-walled and open-ended cylindrical shell that is coaxially and partially submerged inside the container. The interaction between the fluid and the structure is taken into account to calculate the sloshing and bulging frequencies and modes of the coupled system using the Rayleigh quotient, Ritz expansion and Galerkin method. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy. The effects of fluid level, number of nodal diameters, internal body radius and submergence ratio on the dynamic characteristics of the coupled system are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号