首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mixed-metal single-molecule magnets containing [Mn8Fe4O12]16+ cores are synthesized and characterized. The reaction of FeCl2·4H2O with KMnO4 and RCOOH (R = CH2Cl, CH2Br) in H2O gives [Mn8Fe4O12(O2CR)16(H2O)4] (R = CH2Cl (1), CH2Br (2)) in yields of 43% and 40%, respectively. Treatment of complex 1 with an excess of CHCl2COOH in CH2Cl2 gives [Mn8Fe4O12(O2CCHCl2)16(H2O)4]·CH2Cl2·10H2O (3·CH2Cl2·10H2O) in a yield of 83%. The X-ray structure analysis reveals that all three complexes consist of a trapped-valence dodecanuclear core comprising 4MnIII, 4FeIII, and 4MnIV ions. DC magnetic susceptibility and magnetization measurements indicate that all three complexes exhibit intramolecular antiferromagnetic interaction, resulting in an S = 4 ground state. In addition, frequency-dependent out-of-phase AC magnetic susceptibility signals at low temperature for complexes 1, 2, and 3 are indicative of their single-molecule magnetism behavior.  相似文献   

2.
Two new supramolecular compounds based on arsenic vanadates formulated as [H2As6V15O42(H2O)][Co(H2O)6]2·2H2O (1) and [H2As6V15O42(H2O)][Ni(H2O)6]2·2H2O (2) have been prepared by reacting V2O5, H2C2O4·2H2O, As2O3,·H2SO4, CoCl2·6H2O (NiSO4·6H2O) and enMe (enMe=1,2-diaminopropane) under mild hydrothermal conditions and characterized by elemental analyses, IR, ESR, XPS and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compounds 1 and 2 are isostructural and exhibit novel 2-D supramolecular layer structures constructed from arsenic-vanadium clusters and two different types of secondary building units (SBUs), respectively, the different SBUs are formed by joint of two adjacent [Co(H2O)6]2+ cations in compounds 1 and [Ni(H2O)6]2+ cations in 2, respectively.  相似文献   

3.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

4.
Synthesis, thermal behaviour and crystal structures of [Et3NH]4[V10O26(OH)2] (1) and [Me2HN(CH2)2NHMe2]3[V10O28] · 4H2O (2) are reported. In the crystal lattice of 1, the anions form discrete dimers via O–H···O hydrogen bonds and the cations are connected to the respective anions through N–H···O hydrogen bonds. On the other hand, 2 forms a complex three-dimensional network due to involvement of the cations, the anions and the lattice water in O–H···O and N–H···O hydrogen bonds.  相似文献   

5.
Reactions of malonic acid (H2mal) with PrCl3·6H2O afforded the known complex [Pr2(mal)3(H2O)6]n (1), and compounds [Pr2(mal)3(H2O)6]n·2nH2O (2·2nH2O), [PrCl(mal)(H2O)3]n·0.5nH2O (3·0.5nH2O) and [Pr(mal)(Hmal)(H2O)3]n·nH2O (4·nH2O) using various reaction ratios, reaction media (H2O, MeOH) and pH values. Analogous reactions with CeCl3·7H2O afforded compounds [Ce2(mal)3(H2O)6]n (5), [CeCl(mal)(H2O)3]n·nH2O (6·nH2O) and [Ce(mal)(Hmal)(H2O)3]n·nH2O (7·nH2O). Compounds 2·2nH2O and 3·0.5nH2O were characterized by X-ray crystallography, and 47 by microanalytical and spectroscopic data. The malonate(-2) ligand adopts three different coordination modes in the structures of 13, i.e., the μ2OO′:κO″ and the μ42OO′:κ2O″:κO? in 1 and 2 leading to a 3D network structure, and the μ32OO′:κ2O″:κO? in 3 promoting an 1D structure. The thermal decomposition of 1 and 3·0.5nH2O was monitored by TG/DTA and TG/DTG measurements. The structural features of 13 are discussed in terms of known malonato(-2) LnIII and CaII complexes. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

6.
Two polyoxometalate (POM) supramolecular assemblies based on W18 clusters and the rigid organic trans-1,2-di-(4-pyridyl)-ethylen (bpe) have been synthesized and fully characterized, namely (H2bpe)3.5H2[SbW18O60]·5H2O (1), and (H2bpe)5[Ni4(AsW9O34)2(H2O)2]·3H2O (2). Compounds 1-2 are formed from organic bpe cations and different polytungstate anions: pseudo-Dawson-type [SbW18O60]9− in 1 and sandwich-type [Ni4(H2O)2(AsW9O34)2]10− in 2. Both of compounds 1-2 crystallize in a low-symmetrical space group of P-1 and consist of a complicated supramolecular network based on non-covalent intermolecular weak interactions, including hydrogen bonding and π···π stacking. The multipoint hydrogen bonding interactions constitute the structural feature in two supramolecular frameworks. The UV-vis, fluorescence and electrochemistry properties are also studied.  相似文献   

7.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

8.
Reactions of Ln2O3 and trans-4-pyridylacrylic acid (4-Hpya) in EtOH/H2O or MeOH/H2O produced two new lanthanide/4-pya complexes [Ln(4-pya)3(H2O)2]2 (1: Ln = Eu; 2: Ln = La) in low yields. However, reactions of LnCl3 · 6H2O with 4-Hpya/aqueous ammonia in EtOH/H2O or MeOH/H2O gave rise to 1 or 2 in higher yields. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and X-ray analysis. Compounds 1 · 2EtOH · 2H2O and 2 · 2MeOH · 2H2O were confirmed to possess one-dimensional polymeric chain structures. In the structure of 1, each Eu(III) adopts a monocapped square-antiprism coordination geometry and each dimer [Eu(4-pya)3(H2O)2]2 within the chain is interconnected by two pairs of different bridging 4-pya ligands. On the other hand, each La(III) of 2 takes a bicapped square-antiprism coordination geometry and each dimer [La(4-pya)3(H2O)2]2 within the chain is linked by two pairs of tridentate bridging 4-pya ligands. The luminescent properties of 1 and 2 in the solid state were investigated.  相似文献   

9.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

10.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

11.
The reactivity of the [Mo7O24]6− anion towards the structure directing-reagent piperazine (pipz) has been investigated and new synthetic routes to achieve the known (H2pipz)3[Mo8O27] 1, (H2pipz)[Mo3O10]·H2O 2, and (H2pipz)[Mo5O16] 3 molybdenum(VI) containing compounds are proposed. The role of the pH on the stabilization of the different compounds and their interconversion pathways is discussed. Compounds 1 and 2 show photochromic behavior under UV excitation, related to the particular organization of the organic component around the mineral framework. Their optical properties are reported and commented.  相似文献   

12.
The reaction between BaI2 · 2H2O and NaHFIP [HFIP = OCH(CF3)2] in a 1:1 stoichiometry gave the heterometallic compound NaBaI2(HFIP)(H2O)(THF)0.5 (1). Attempts to recrystallize 1 in the presence of N- or O-donor ligands lead to redistribution reactions. Barium iodide adducts such as BaI2(DME)3 (2), trans-BaI2(DME)(triglyme) (3) and cis-BaI2(DME)(tetraglyme) (4) were isolated with DME as solvent. A similar behavior was observed for the reaction between BaI2 · 2H2O and NaTFA (TFA = O2CCF3) in a 1:1 stoichiometry in THF, and [Ba(tetraglyme)2]I2 · C7H8 (6) was isolated in the presence of excess tetraglyme. All compounds have been characterized by elemental analysis, IR and 1H NMR as well as single crystal X-ray studies for 3, 4 and 6. Compounds 3 and 4 are covalent adducts with eight- and nine-coordinate barium, respectively. Compound 6 is an ionic compound where two tetraglyme ligands wrap the 10-coordinate barium cation in a helical fashion. The presence of DME actually allows the coordination number of barium in the mixed-ligand adducts 3 and 4 to be tuned. The average Ba–O bond lengths (2.80 for 3 to 2.87 Å for 6) reflect the coordination number of the metal. The same observation is valid for the average Ba–I bond distance, 3.442 for 3 vs. 3.536 Å for 4.  相似文献   

13.
Treatment of RnGeCl4−n with {S(C6H3SH)2O} (1) afforded the stable phenoxathiin-4,6-dithiolate compounds [{S(C6H3S)2O}GeR2] [n = 2; R = Et (2), Ph (3)] and [{S(C6H3S)2O}GeRCl] [n = 1; R = Et (4), Ph (5)]. Treatment of GeCl4 with 1 in benzene afforded the dichloro compound [{S(C6H3S)2O}GeCl2] (8) at 7 °C. Bromo compounds [{S(C6H3S)2O}GeRBr] [R = Et (6), Ph (7)] and [{S(C6H3S)2O}GeBr2] (9) were synthesized by halogen exchange from the appropriate chloro derivative using KBr/HBr. X-ray structure determinations of diorganyl dithiolate compounds 2 and 3 revealed that germanium atom is contained in a boat–chair-shaped eight-membered central ring and displays a tetrahedral geometry. In contrast, compounds 46 display a boat–boat-shaped central ring with a significant intramolecular transannular O···Ge interaction. The geometry of the pentacoordinate Ge atom in these last complexes may be described as distorted trigonal bipyramidal with a 62–65% distortion displacement.  相似文献   

14.
Three polyoxotungstates, Na8[Cu(H2O)2(H2W12O42)]·30H2O (1), Na8[Cd(H2O)2(H2W12O42)]·20H2O (2), and Na7.4[Cd1.3(H2O)2(H2W12O42)]·24H2O (3), were synthesized and characterized by elemental and thermogravimetric (TG)analysis, infrared spectroscopy and X-ray single-crystal analysis. Both complexes 1 and 2 exhibit one-dimensional structure with two neighboring paradodecatungstate-B clusters, [H2W12O42]10−, linked by [Cu(H2O)2]2+ or [Cd(H2O)2]2+ units, while complex 3 displays a two-dimensional network structure. The electrochemical behaviors of complexes 1 and 3 were investigated in the buffer solution of pH 4.8. The results of electrocatalysis reveal that the reduced species of complexes 1 and 3 are electrocatalytically active for the reduction of nitrite. Complex 1 exhibits the electrocatalytic activity for the reduction of nitrate as well. The surface photovoltage spectroscopy (SPS) and electric field-induced SPS (EFISPS) measurements show that the surface photovoltage behavior of complex 1 is complicated while complex 3 bears the property of n-type semiconductor.  相似文献   

15.
The reaction of CuSO4 · H2O with 4-bpytm [4-bpytm = bis(4-pyridylthio)methane] in EtOH afforded the complex [Cu(SO4)(4-bpytm)(H2O)3] · H2O (1 · H2O) while the reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH afforded the complex [Cu(NO3)2(4-bpytm)2] · H2O (2 · H2O). The reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH/dmf under microwave irradiation afforded the pseudo-polymorph [Cu(NO3)2(4-bpytm)2] · Solv (2 · Solv). Compound 1 · H2O forms helical chains while compounds 2 · H2O and 2 · Solv are 2D coordination polymers with a (4,4) topology based on rhombic grids in 2 · H2O and on a parquet motif in 2 · Solv. The 3D supramolecular organization through hydrogen bonding is analyzed for the three compounds and their thermal behaviour was also investigated.  相似文献   

16.
The organic-inorganic hybrid materials vanadium oxide [VIVO2(phen)2]·6H2O (1) and [(2,2′-bipy)2VVO2](H2BO3)·3H2O (2) have been conventional and hydrothermal synthesized and characterized by single crystal X-ray diffraction, elemental analyses, respectively. Although the method and the ligand had been used in the syntheses of the compounds (1) and (2) are different, they almost possess similar structure. They all exhibit the distorted octahedral [VO2N4] unit with organonitrogen donors of the phen and 2,2′-bipy ligands, respectively, which coordinated directly to the vanadium oxide framework. And they are both non-mixed-valence complexes. But the compound (1) is isolated, and the compound (2) consists of a cation of [(2,2′-bipy)2VVO2]+ and an anion of (H2BO3). So the valence of vanadium of (1) and (2) are tetravalence and pentavalence, respectively. Meanwhile it is noteworthy that π-π stacking interaction between adjacent phen and 2,2′-bipy groups in compounds 1 and 2 also play a significant role in stabilization of the structure. Thus, the structure of [VIVO2(phen)2]·6H2O and [(2,2′-bipy)2VVO2](H2BO3)·3H2O are both further extended into interesting three-dimensional supramolecular. Crystal data: (1) Triclinic, a=8.481(4), b=12.097(5), and α=66.32(2), β=82.97(3), and γ=82.59(4)°, Z=2, R1=0.0685, wR2=0.1522. (2) Triclinic, a=6.643(13), b=11.794(2), and α=101.39(3), β=101.59(3), and γ=97.15(3)°, Z=2, R1=0.0736, wR2=0.1998.  相似文献   

17.
Two oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)] · 1.58H2O (1) and [V3O3(CSHA)3(H2O)3] · 3CH3COCH3 (2) have been synthesized by reaction of VO43− with N-salicyl hydroxamic acid (SHAH3) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH3), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH2)(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0–5 °C) yields a stable oxoperoxovanadium(V) complex H[VO(O2)(PyDC)(H2O)] · 2.5H2O (4). All four complexes (14) have been characterized by spectroscopic (IR, UV–Vis, 51V NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons.  相似文献   

18.
A series of new compounds containing rare earth cations (Eu to Yb) and paramagnetic cluster anion [Re6Te8(CN)6]3− was prepared and investigated. The X-ray structural analyses have revealed that the compounds [{Ln(H2O)4}{Re6Te8(CN)6}] · 2.5H2O; Ln = Eu (1), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), [{Gd(H2O)3}{Re6Te8(CN)6}] · 2.5H2O (2) and [{Yb(H2O)4}{Re6Te8(CN)6}] (8) are three-dimensional polymers based on Re–CN–Ln interactions. Measurements of magnetic susceptibility for 2 and 5 showed that effective magnetic moment (at 300 K) was 8.13 μB for compound 2 and 10.79 μB for compound 5 with weak antiferromagnetic ordering appeared at low temperatures.  相似文献   

19.
Four copper(II) complexes (14) and a cobalt(II) complex (5) derived from 4-bromo-2-(hydroxymethyl)pyridine (L1) or 5-bromo-2-hydroxymethyl)pyridine (L2) with Cu(NO3)2·3H2O, CuCl2·2H2O and CoCl2·6H2O have been synthesized and their respective crystal structures studied. They show specific influences owing to the different kind of metal cations and counter anions, the hydration as well as the different position of the bromine substitution on both the coordination of the complex unit and the network structure of the crystal lattice. The Cu(II) complexes of L1 are five-coordinate [Cu(L1)2NO3]NO3·H2O (1) and [Cu(L1)2Cl]Cl·H2O (2) species with distorted quadratic pyramidal and trigonal bipyramidal coordination geometries of the N2O3 and N2O2Cl donor atoms around the Cu(II), respectively. The Cu(II) complexes of L2 are six-coordinate [Cu(L2)2(NO3)2] (3) and [Cu(L2)2Cl(H2O)]Cl·H2O (4) species with distorted octahedral coordination geometries of the N4O2 and N2O3Cl donor atoms. A distorted octahedral coordination geometry of the N2O2Cl2 donor atoms is also found in the complex unit [Co(L2)2Cl2] of the Co(II) complex 5 but showing the oxygen atoms of the chelating ligand as well as the chloride ions in a cis-position. Depending on the complex, water molecules and chloride anions are shown to act as stabilizing components of the crystal structure. The comparative structural investigation includes also known structures of the bromine-free ligand analogue 2-(hydroxymethyl)pyridine, illustrating the basic implication of the bromine substitution, mostly perceptible in the different modes of crystal packing.  相似文献   

20.
Self-assembly of presynthesized [Sb2(tart)2]2− metalloligand as molecular building block with metal salts affords three unique heterometallic coordination polymers, namely, {[Ln(H2O)6][Sb2(tart)2]}Cl·5H2O (Ln = La (1), Pr (2)) and {[Ba2(H2O)7][Sb2(tart)2]2}·4H2O (3), (tart = tartaric acid). Their structures were determined by single crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and TG analyses. Compounds 1 and 2 are isostructural and represent the first examples of lanthanide-organic open frameworks containing [Sb2(tart)2]2− metalloligands. The structures of 1 and 2 contain left-handed and right-handed layer, each built up from the same-handed helical chains. Compound 3 consists of two kinds of arm-shaped chiral layers, which alternately stack in a heterochiral fashion to yield a racemic 3D hydrogen-bonded network with 1D channels along the a axis. To the best of our knowledge, compounds 1-3 are the first 2D chiral layer frameworks constructed from [Sb2(tart)2]2− metalloligands and rare-earth or alkaline-earth metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号