首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of maghemite, γ-Fe2O3 nanoparticles has been studied by in situ X-ray powder diffraction. The maghemite was formed by thermal decomposition of an amorphous precursor compound made by reacting lauric acid, CH3(CH2)10COOH with Fe(NO3)3·9H2O. It has been shown that cubic γ-Fe2O3 was formed directly from the amorphous precursor and that vacancy ordering starts about 45 min later at 305 °C resulting in a tripled unit cell along the c-axis. The kinetics of grain growth was found to obey a power law with growth exponents n equal to 0.136(6) and 0.103(5) at 305 and 340 °C, respectively. Particles with average sizes of 12 and 13 nm were obtained in 86 and 76 min at 305 and 340 °C, respectively. The structure of cubic and vacancy ordered phases of γ-Fe2O3 was studied at 305 °C by Rietveld refinements.  相似文献   

2.
Novel flexible NH3 gas sensors were formed by the in situ self-assembly of polypyrrole (PPy) on plastic substrates. A negatively charged substrate was prepared by the formation of an organic monolayer (3-mercapto-1-propanesulfonic acid sodium salt—MPS) on a polyester (PET) substrate using a pair of comb-like Au electrodes. Two-cycle poly(4-styrenesulfonic acid) sodium salt/poly(allylamine hydrochloride) (PSS/PAH) bilayers (precursor layer) were then layer-by-layer (LBL) deposited on an MPS-modified substrate. Finally, a monolayer of PPy self-assembled in situ and PPy multilayer thin films self-assembled LBL in situ on a (PSS/PAH)2/MPS/Au/Cr/PET substrate. The thin films were analyzed by atomic force microscopy (AFM). The effects of the precursor layer (PSS), the deposition time of the monolayer of PPy and the number of PPy multilayers on the gas sensing properties (response) and the flexibility of the sensors were investigated to optimize the fabrication of the film. Additionally, other sensing properties such as sensing linearity, reproducibility, response and recovery times, as well as cross-sensitivity effects were studied. The flexible NH3 gas sensor exhibited a strong response that was comparable to or even greater than that of sensors that were fabricated on rigid substrate at room temperature.  相似文献   

3.
Current techniques being used for sunscreen analysis are incapable of direct determination of the active ingredients in sunscreen formulations. Therefore, the development of methodologies for rapid in situ analysis of sunscreens is desirable. This paper describes the application of ultraviolet resonance Raman spectroscopy (UVRRS) to the direct in situ analysis of sunscreen formulations. High-quality UV resonance Raman spectra were obtained for five sunscreen active ingredients (AIs), mixtures of the AIs and real sunscreen formulation samples. The spectra from the sunscreen formulations gave distinct spectral signatures indicative of the sunscreen AIs in each sample, with essentially no interference from the complex sunscreen matrix. Also, despite the fact that many of the AIs are fluorescent, no fluorescence interferences in the resonance Raman spectra were observed. Excitation wavelength-dependent studies throughout the 244-275 nm region demonstrate that the best discrimination of the AIs was achieved at an excitation wavelength of 244 nm. Thus, by tuning the excitation wavelength within the absorption bands of the AIs, complete identification of these analytes can be achieved in situ without any sample pretreatment or separation. The limit of detection found for a common AI in situ with this technique is 0.23% (w/w), the limit of quantitation is 0.78% (w/w), while the dynamic range is between 0.8% and 50% (w/w). The technique is fast, robust, lacks any major interference, and can be adapted for routine online quality control.  相似文献   

4.
The hydrothermal synthesis of nanocrystalline ZnSe has been studied by in situ X-ray powder diffraction using synchrotron radiation. The formation of ZnSe was studied using the following starting mixtures: Zn+Se+H2O (route A) and ZnCl2+Se+H2O+Na2SO3 (route B). The route A experiment showed that Zn powder starts reacting with water at 134 °C giving ZnO and H2 followed by the formation of ZnSe which takes place in temperature range from 167 to 195 °C. The route B experiment shows a considerably more complex reaction path with several intermediate phases and in this case the formation of ZnSe starts at 141 °C and ZnSe and Se were the only crystalline phases observed at the end of the experiment where the temperature was 195 °C. The sizes of the nanocrystalline particles were determined to 18 and 9 nm in the route A and B experiments, respectively. Nanocrystalline ZnSe was also synthesized ex situ using the route A and B methods and characterized by conventional X-ray powder diffraction and transmission electron microscopy. An average crystalline domain size of ca. 8 nm was determined by X-ray powder diffraction in fair agreement with TEM images, which showed larger aggregates of nanoparticles having approximate diameters of 10 nm. Furthermore, a method for purification of the ZnSe nanoparticles was developed and the prepared particles showed signs of anisotropic size broadening of the diffraction peaks.  相似文献   

5.
6.
In situ polymerized PS/EPDM blends were prepared by dissolving poly(ethylene-co-propylene-co-2-ethylidene-5-norbornene) (EPDM) in styrene monomer, followed by bulk polymerization at 60 °C and 80 °C . EPDM has excellent resistance to such factors as weather, ozone and oxidation, attributed to its non-conjugated diene component, and it could be a good alternative for substituting polybutadiene-based rubbers in PS toughening. The in situ polymerized blends were characterized by dynamic mechanical analysis, thermogravimetric analysis, gel permeation chromatography, and tensile and Izod impact resistance tests. The PS/EPDM blends are immiscible and present two phases, a dispersed elastomeric phase (EPDM) in a rigid PS matrix whose phase behavior is strongly affected by the polymerization temperature. Mechanical properties of the blends are influenced by the increase in the average size of EPDM domains with the increase in the polymerization temperature and EPDM content. The blends polymerized at 60 °C containing 5 wt% of EPDM presents an increase in the impact resistance of 80% and containing 17 wt% of EPDM presents an increase in the strain at break of 170% in comparison with the value of PS. The blend polymerized at 80 °C containing 17 wt% of EPDM presents an increase in the strain at break of 480% and in impact resistance of 140% in comparison with the value of PS.  相似文献   

7.
This paper reported the degradation behaviors and thermal properties of polystyrene (PS)/polyolefin elastomer (POE) blends with AlCl3 as the catalyst of Friedel-Crafts alkylation reaction. Gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) were adopted to reveal the effects of in situ grafting reaction and degradation of blending compounds on the thermal properties of PS/POE blends. It was found that the changes in both catalyst content and blend composition influenced the competition between in situ grafting reaction and degradation, resulting in the complexity of the thermal properties of PS/POE/AlCl3 blends.  相似文献   

8.
Three new metal-organic frameworks, [Zn(atz)(nic)]n(1), [Zn(atz)(isonic)]n·nHisonic(2) and [Cd(atz)(isonic)]n(3) (Hnic=nicotinic acid, Hisonic=isonicotinic acid), have been firstly synthesized by employing mixed-ligand of pyridinecarboxylate with the in situ generated ligand of 5-amino-tetrazolate(atz), and characterized by elemental analysis, IR spectroscopy, TGA and single crystal X-ray diffraction. The results revealed that 1 presents a two-dimensional (2D) “sql” topological network constructed from the linear chain subunit of Zn(nic)2 and atz ligand. A remarkable feature of 2 is a 2-fold interpenetrated diamondoid network with free Hisonic molecules locating in the channels formed by the zigzag chain subunits of Zn(isonic)2. Complex 3 is a 3D non-interpenetrated pillared framework constructed from the double chain subunits of Cd-COO-Cd. It possesses a rarely observed (4,6)-connected “fsc” topology. The thermal stabilities and fluorescent properties of the complexes were investigated. All of these complexes exhibited intense fluorescent emissions in the solid state at room temperature.  相似文献   

9.
Diol capped γ-Fe2O3 nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5 nm) and 1,5-pentanediol (15 nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673 K) are γ-Fe2O3 and the 773 K-sintered sample is Fe3O4. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to α-Fe2O3 at higher laser power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of γ-Fe2O3 sample with large particle size (15.4 nm) is more than the sample with small particle size (10.2 nm). Fe3O4 having a particle size of 48 nm is however less stable than the smaller γ-Fe2O3 nanoparticles.  相似文献   

10.
The hydro(solvo)thermal self-assembles of CuI, KI and 2,5-dicarboxylpyridine [2,5-(COOH)2py] in different molar ratios in H2O/alcohol solutions produced three Cu coordination polymers as 2-D [N-C2H5py][Cu3I4] 1, 1-D [N-CH3py][Cu2I3] 2 as well as 1-D [Cu(2-COOpy)2]H2O 3 (N-C2H5py=N-ethylpyridine, N-CH3py=N-methylpyridine, 2-COOpy=2-carboxylpyridine). N-C2H5py in 1 and N-CH3py in 2 derived from the solvothermal in situ simultaneous decarboxylation and N-alkylation reactions of 2,5-(COOH)2py. The semi-decarboxylation reaction of 2,5-(COOH)2py into 2-COOpy occurred in the preparation of 3. X-ray single-crystal analysis revealed that CuI is transformed into a 2-D [Cu3I4] layer in compound 1 and a 1-D chain in compound 2, templated by [N-C2H5py]+ and [N-CH3py]+, respectively. Compound 3 is a divalent Cu compound. The Cu(II) centers with a 4+2 geometry are coordinated by μ3-mode 2-COOpy ligands. All of the title compounds were characterized by CHN analysis, IR spectrum analysis and TG analysis. Compounds 1 and 2 exhibit fluorescence properties with the maximum emissions at 581 nm for 1 and 537 nm for 2.  相似文献   

11.
Crystalline ZrO2 nanoparticles were prepared from zirconium isopropoxide by slow hydrolysis and subsequent hydrothermal treatment of solutions containing various amounts of sodium hydroxide at 180 °C. Whereas moderately basic solutions lead to the formation of nanoparticles of monoclinic ZrO2 with plate-like morphology, and nanoparticles of the cubic ZrO2 high-temperature polymorph with diameters of approx. 5 nm were obtained from strongly basic solutions. The morphology, structure and properties of as-synthesized nanoparticles were characterized using HRTEM, XRD, Raman spectroscopy, UV–vis, PL spectroscopy and BET measurements. The formation of both, the monoclinic and the cubic polymorph, was confirmed by electron microscopy and Raman spectroscopy. The crystallinity and morphology of the resulting ZrO2 nanoparticles can be adjusted by the choice of the reaction conditions. The cubic ZrO2 nanoparticles have a high surface area (300 m2/g) and exhibit a strong photoluminescence in the UV region.  相似文献   

12.
采用双水解共沉淀法结合浸渍法合成了系列的MoO3改性的xMoO3/NiO-Al2O3催化剂(x%为MoO3的质量分数),利用固定床装置对催化剂的甲烷化反应活性和耐硫性能进行评价,并对失活前后催化剂进行详细表征。结果表明,随着MoO3含量的升高MoO3改性后的催化剂甲烷化活性有所下降,但MoO3的掺杂显著提升了催化剂的耐硫性能。催化剂低温甲烷化活性降低的原因在于MoO3负载量的增加降低了催化剂的活性比表面积,但MoO3的引入也为硫化物提供了一个竞争吸附位点,进而延缓了活性位点的硫中毒过程。当MoO3负载量(质量分数)为12.5%时,12.5MoO3/NiO-Al2O3催化剂在143 mg·m-3 H2S/H2气氛下运行时间长达7 h,远高于其他催化剂。12.5MoO3/NiO-Al2O3催化剂吸收硫的量(质量分数)达到0.71%,是NiO-Al2O3催化剂硫吸附量的1.48倍。XPS表征进一步发现12.5MoO3/NiO-Al2O3催化剂表面生成的MoS2最多,这说明在此负载量下Mo优先吸附了更多的硫而保护了活性位点。此外,MoO3负载量为12.5%时,MoO3在催化剂表面接近单层分散阀值,当竞争吸附发生时,为硫化物提供更多的吸附位点。  相似文献   

13.
采用双水解共沉淀法结合浸渍法合成了系列的MoO3改性的xMoO3/NiO-Al2O3催化剂(x%为MoO3的质量分数),利用固定床装置对催化剂的甲烷化反应活性和耐硫性能进行评价,并对失活前后催化剂进行详细表征。结果表明,随着MoO3含量的升高MoO3改性后的催化剂甲烷化活性有所下降,但MoO3的掺杂显著提升了催化剂的耐硫性能。催化剂低温甲烷化活性降低的原因在于MoO3负载量的增加降低了催化剂的活性比表面积,但MoO3的引入也为硫化物提供了一个竞争吸附位点,进而延缓了活性位点的硫中毒过程。当 MoO3负载量(质量分数)为 12.5% 时,12.5MoO3/NiO-Al2O3催化剂在 143 mg·m-3 H2S/H2气氛下运行时间长达7 h,远高于其他催化剂。12.5MoO3/NiO-Al2O3催化剂吸收硫的量(质量分数)达到0.71%,是NiO-Al2O3催化剂硫吸附量的1.48倍。XPS表征进一步发现12.5MoO3/NiO-Al2O3催化剂表面生成的MoS2最多,这说明在此负载量下Mo优先吸附了更多的硫而保护了活性位点。此外,MoO3负载量为12.5%时,MoO3在催化剂表面接近单层分散阀值,当竞争吸附发生时,为硫化物提供更多的吸附位点。  相似文献   

14.
In this paper, the shape evolution and thermal stability of Ag nanoparticles (NPs) on spherical SiO2 substrates were investigated by means of in situ transmission electron microscopy (TEM) imaging and differential scanning calorimetry (DSC). The initial Ag NPs at room temperature were semispherical-like, with an average size of 9 nm in half-height width, well-dispersed on spherical SiO2 substrates. No obvious shape change was observed when the semispherical NPs of Ag were heated at temperature lower than 550 °C. The shape of the semispherical Ag NPs changed gradually into a spherical one in the temperature range of 550-700 °C, where surface diffusion and surface premelting took place. When the heating temperature was increased up to 750 °C, the spherical Ag NPs were found to desquamate from the substrates due to the decreases of the contact area and the binding force between Ag NPs and SiO2 substrates. A possible mechanism for the desquamation of Ag NPs from the SiO2 sphere surface is proposed according to the results of in situ TEM observation and DSC analysis.  相似文献   

15.
Fischer-Tropsch syntheses (FTS) were carried out in a slurry phase over Ru/Al2O3 catalysts using hexadecane as a solvent. The outcome of the FTS was dependent on the oxide support, calcination temperature, synthesis gas composition and sulfur content. The addition of Mn/Na to Ru/Al2O3 was effective in raising the initial activity and C5+ selectivity, but after 20 hours, the performance of the modified catalyst was similar to that of the unmodified catalyst. An additional investigation involving the use of fresh vs used catalysts demonstrated that an agglomeration of the metallic Ru, at least in part, does occur during the reaction.  相似文献   

16.
Alumina supports with a very narrow pore size distribution were obtained with indium-doped alumina prepared by the sol-gel method. The formation of aluminum in pentahedral coordination was identified by 27Al NMR-MAS-spectroscopy. A good correlation was obtained with the AlV NMR-MAS intensity signal and the activity in isopropanol dehydration. The insertion of In3+ substituting some Al3+ in the alumina network was suggested.  相似文献   

17.
La2Mo2O9 ceramics have been prepared from freeze-dried precursors and their properties compared to those of lantanum molybdate obtained by conventional solid state (SS) reaction. All materials have been characterized by X-ray diffraction, scanning electron microscopy and thermal analysis (TGA/DTA/DSC and dilatometry) to characterize the phase formation and phase transition. When the freeze-dried method was applied, the synthesis temperature required to obtain dense samples was much lower than that for powders obtained by SS reaction. The morphology and structure of the oxide particle are significantly dependent on the synthesis method. The grain size is smaller, whereas the density of sintered pellets is higher for the freeze-dried precursor powder when compared with the SS reaction method. Impedance spectroscopy was used to measure the electrical conductivity of La2Mo2O9 from 548 to 1123 K, in air, and to characterize the blocking effects of grain boundaries.  相似文献   

18.
Xiangli Sun  Yukui Zhang 《Talanta》2010,82(1):404-5307
A simple one-step in situ “click” modification strategy was developed for the preparation of hydrophobic organic monolithic columns for the first time. The column morphology and surface chemistry of the fabricated monolithic columns were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The chromatographic performances of the C8/C18 “click” monoliths were evaluated through the separation of a mixture of five proteins such as ribonuclease A, soybean trypsin inhibitor, cytochrome c, bovine haemoglobin and bovine serum albumin. Compared with the blank column, the higher hydrophobicity stationary phases obtained from the “clicked” modification have longer retention times and higher resolution for the five proteins. The separation of five proteins mixture on click C18 monolith with gradient elution at different flow rates was also investigated, the baseline separation of five proteins could be achieved at three different flow rates.  相似文献   

19.
Magnetic diphase nanostructures of ZnFe2O4/γ-Fe2O3 were synthesized by a solvothermal method. The formation reactions were optimized by tuning the initial molar ratios of Fe/Zn. All samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and Raman spectra. It is found that when the initial molar ratio of Fe/Zn is larger than 2, a diphase magnetic nanostructure of ZnFe2O4/γ-Fe2O3 was formed, in which the presence of ZnFe2O4 enhanced the thermal stability of γ-Fe2O3. Further increasing the initial molar ratio of Fe/Zn larger than 6 destabilized the diphase nanostructure and yielded traces of secondary phase α-Fe2O3. The grain surfaces of diphase nanostructure exhibited a spin-glass-like structure. At room temperature, all diphase nanostructures are superparamagnetic with saturation magnetization being increased with γ-Fe2O3 content.  相似文献   

20.
本文利用一种具有H_2O_2催化活性的Cu-MOF[Cu_3(BTC)_2(H_2O)_3,简称HKUST-1],构建了以邻苯二胺(OPD)为颜色指示分子的比色传感体系,实现了对H_2O_2和多巴胺(DA)的快速灵敏检测。HKUST-1起到催化H_2O_2氧化OPD的作用,反应体系能够呈现出显著的颜色变化。在优化条件下,415nm处的吸收峰强度与H_2O_2浓度呈双线性关系,线性范围分别为10~50 mmol/L和50~100 mmol/L,相对标准偏差分别为0.9947和0.9995,最低检出限为1.29mmol/L。由于DA能抑制H_2O_2氧化OPD,因此比色传感体系还可以用于快速检测DA,线性范围分别为0.25~5μmol/L和2.5~25μmol/L,相对标准偏差分别为0.9783和0.9705,最低检出限为0.262μmol/L。该项工作拓展了Cu-MOFs材料在生物分子催化和生物传感方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号