首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of the present study is to investigate the nonlinear free vibration of spinning cylindrical shells under spinning and arbitrary boundary conditions. Artificial springs are used to simulate arbitrary boundary conditions. Sanders' shell theory is employed, and von Kármán nonlinear terms are considered in the theoretical modeling. By using Chebyshev polynomials as admissible functions, motion equations are derived with the Ritz method. Then, a direct iteration method is used to obtain the nonlinear vibration frequencies. The effects of the circumferential wave number, the boundary spring stiffness, and the spinning speed on the nonlinear vibration characteristics of the shells are highlighted. It is found that there exist sensitive intervals for the boundary spring stiffness, which makes the variation of the nonlinear frequency ratio more evident. The decline of the frequency ratio caused by the spinning speed is more significant for the higher vibration amplitude and the smaller boundary spring stiffness.  相似文献   

3.
Chaotic vibrations of a beam with non-linear boundary conditions   总被引:7,自引:0,他引:7  
Forced vibrations of an elastic beam with non-linear boundary conditions are shown to exhibit chaotic behavior of the strange attractor type for a sinusoidal input force. The beam is clamped at one end, and the other end is pinned for the tip displacement less than some fixed value and is free for displacements greater than this value. The stiffness of the beam has the properties of a bi-linear spring. The results may be typical of a class of mechanical oscillators with play or amplitude constraining stops. Subharmonic oscillations are found to be characteristic of these types of motions. For certain values of forcing frequency and amplitude the periodic motion becomes unstable and nonperiodic bounded vibrations result. These chaotic motions have a narrow band spectrum of frequency components near the subharmonic frequencies. Digital simulation of a single mode mathematical model of the beam using a Runge-Kutta algorithm is shown to give results qualitatively similar to experimental observations.  相似文献   

4.
Free and forced flexural nonlinear vibrations of a two-layer beam are investigated. Each beam is assumed to have Euler?CBernoulli kinematics and free-free boundary conditions. The interface allows only nonlinear elastic slip between adjacent sides of the beams, so that the transversal displacement is unique. Free vibrations are considered first by the multiple time scale method, which allows to determine the amplitude dependent nonlinear natural frequencies of the system. It is shown that the nonlinear coefficient of the backbone curve is positive, so that hardening/softening behavior of the interface generates hardening/softening behavior of the whole structure. The modifications of the linear normal modes for moderate excitation amplitudes have been computed. Forced and damped nonlinear oscillations are then considered by the same mathematical method, and the nonlinear frequency response curves are obtained.  相似文献   

5.
Axially moving beams are often discussed with several classic boundary conditions, such as simply-supported ends, fixed ends, and free ends. Here, axially moving beams with generalized boundary conditions are discussed for the first time. The beam is supported by torsional springs and vertical springs at both ends. By modifying the stiffness of the springs, generalized boundaries can replace those classical boundaries.Dynamic stiffness matrices are, respectively, established for axially moving Timoshenko beams and Euler-Bernoulli(EB) beams with generalized boundaries. In order to verify the applicability of the EB model, the natural frequencies of the axially moving Timoshenko beam and EB beam are compared. Furthermore, the effects of constrained spring stiffness on the vibration frequencies of the axially moving beam are studied. Interestingly, it can be found that the critical speed of the axially moving beam does not change with the vertical spring stiffness. In addition, both the moving speed and elastic boundaries make the Timoshenko beam theory more needed. The validity of the dynamic stiffness method is demonstrated by using numerical simulation.  相似文献   

6.
The equilibrium shapes of a nonisothermal liquid film with a heat-insulated free surface for large Marangoni numbers are investigated in the long-wave approximation using a combination of analytical and numerical methods. It is proved that the two-dimensional problem of the equilibrium of a strip-shaped film has a steady-state solution for an arbitrary large temperature gradient on the boundaries of the strip. An increase in this gradient leads to an abrupt thinning of the film near the heated boundary, which can result in instability and rupture of the film. In the equilibrium problem for a film fixed on a circular contour, the nonuniform distribution of the heat flux on the contour was found to have a significant influence on the free-surface shape. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 59–73, July–August, 2008.  相似文献   

7.
研究了具任意脱层复合材料梁的非线性谐波响应问题。基于弹性理论,建立了考虑剪切变形时的复合材料梁脱层的基本方程式。在空间上采用B样条函数和Galerkin积分法,在时间上采用增量谐波平衡法进行计算。通过实例计算,得出了简谐力作用下的非线性动力响应曲线。认为基谐波振动仍是非线性振动的主要部分。  相似文献   

8.
This paper is a study of the effect of heat input (removal) on the characteristics of a shock layer produced by a gas at high supersonic velocity encountering a mobile boundary, which for generality is assumed to be free. We will use the Chernyi method, which was employed previously to solve the problem of a shock layer in an adiabatic flow [1, 2]. The results obtained can be useful for analysis of the effect of radiation (absorption) and processes involving the relaxation of internal degrees of freedom of molecules, condensation, chemical reactions, etc., whose effect on the gasdynamics of the flow in a shock layer may be similar to heat input or removal [3–5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 152–154, May–June, 1976.The author thanks A. K. Rebrov for discussion of the results.  相似文献   

9.
Di Nino  Simona  Luongo  Angelo 《Nonlinear dynamics》2022,107(2):1529-1544
Nonlinear Dynamics - A homogeneous continuous viscoelastic beam, describing the dynamics of a base-isolated tower, exposed to a uniformly distributed turbulent wind flow, is studied. The beam is...  相似文献   

10.
The nonlinear dynamics of a clamped-clamped/sliding inextensional elastic beam subject to a harmonic axial load is investigated. The Galerkin method is used on the coupled bending-bending-torsional nonlinear equations with inertial and geometric nonlinearities and the resulting two second order ordinary differential equations are studied by the method of multiple time seales and by direct numerical integration. The amplitude equations are analyzed for steady and Hopf bifurcations. Depending on the amplitude of excitation, the damping and the ratio of principal flexural rigidities, various qualitatively distinct frequency response diagrams are uncovered and limit cycles and chaotic motions are found. In the truncated two-degree-of-freedom system the transition from periodic to chaotic amplitude-modulated motions is via the process of torus doubling and subsequent destruction of the torus.  相似文献   

11.
Nonlinear dynamical behaviors of an axially accelerating viscoelastic sandwich beam subjected to three-to-one internal resonance and parametric excitations resulting from simultaneous velocity and tension fluctuations are investigated. The direct method of multiple scales is adopted to obtain a set of first-order ordinary differential equations and associated boundary conditions. The frequency and amplitude response curves along with their stability and bifurcation are numerically studied. A great number of dynamic behaviors are presented in the form of phase portraits, time traces, Poincaré sections, and FFT power spectra. Due to modal interaction, various periodic, quasiperiodic, and chaotic behaviors are displayed, depending on the initial conditions. The largest Lyapunov exponent is carried out to determine the midly chaotic response by the convergent form of exponents. Numerical results show various oscillatory behaviors indicating the influence of internal resonance and coupled effects of fluctuating axial velocity and tension.  相似文献   

12.
This paper presents a closure relation which describes hydraulic jumps in two-layer flows with a free surface over a flat bottom. This relation is derived from the momentum equations for each layer, which, subject to the condition of conservation of the total momentum and mass of each layer, become conservative in a sense. It is shown that use of this relation provides a reduction in the total energy at the jump.  相似文献   

13.
In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.  相似文献   

14.
15.
16.
同一结构在两种不同边界条件下的声振结果存在某种联系,这种联系可用来研究飞行器地面模拟试验环境与空中飞行环境下的状态关系。对此从一般的弹性体波动方程出发,基于载荷等效原则,应用变分原理和偏微分方程理论,对同一结构在不同边界条件下的内在联系进行了研究,证明了这种内在联系的存在性。研究结果表明:响应变化与边界扰动间存在的平方关系;响应变化幅度估计与精确解相比在一个数量级上。  相似文献   

17.
Zheng  Li-Heng  Zhang  Ye-Wei  Ding  Hu  Chen  Li-Qun 《Nonlinear dynamics》2021,103(3):2391-2407
Nonlinear Dynamics - NiTiNOL-steel wire rope (NiTi-ST) is a new vibration absorber with nonlinear stiffness and hysteretic damping. Although there are many studies on NiTi-ST nonlinear...  相似文献   

18.
This paper investigates the nonlinear forced dynamics of an axially moving Timoshenko beam. Taking into account rotary inertia and shear deformation, the equations of motion are obtained through use of constitutive relations and Hamilton’s principle. The two coupled nonlinear partial differential equations are discretized into a set of nonlinear ordinary differential equations via Galerkin’s scheme. The set is solved by means of the pseudo-arclength continuation technique and direct time integration. Specifically, the frequency-response curves of the system in the subcritical regime are obtained via the pseudo-arclength continuation technique; the bifurcation diagrams of Poincaré maps are obtained by means of direct time integration of the discretized equations. The resonant response is examined, for the cases when the system possesses a three-to-one internal resonance and when not. Results are shown through time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The results indicate that the system displays a wide variety of rich dynamics.  相似文献   

19.
In this paper, the interactions between the transverse loads and the electrical field quantities are investigated based on the nonlinear constitutive relation. By considering a composite beam consisting of a piezoelectric semiconductor and elastic layers, the nonlinear model is established based on the phenomenological theory and Euler’s beam theory. Furthermore, an iteration procedure based on the differential quadrature method(DQM) is developed to solve the nonlinear governing equations. Befor...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号