首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着撞击速度的增加,弹体对岩石类靶体的侵彻机制会发生显著变化,由刚体侵彻逐步转变为半流体侵彻和流体侵彻,3种侵彻机制各自适用的理论模型完全不同。在半流体侵彻阶段,弹体质量损失开始显著增加,造成侵彻效率严重下降,侵彻深度随撞击速度的增加急剧减小。基于提出的弹体质量与速度的理论模型以及弹体刚体段的侵彻阻抗,推导出考虑弹体质量损失的半流体侵彻深度计算公式。对于超高速撞击时的流体动力学侵彻段,通过对流体区和刚性区进行假定,建立动量守恒和伯努利方程,推导给出该阶段弹体的侵彻阻抗,结合弹体质量变化方程推导出侵彻深度的表达式。最后将3个阶段的理论计算结果与花岗岩侵彻试验数据进行了对比验证,侵深和弹体质量变化规律均吻合良好,而且各阶段模型计算结果反映出的侵彻变化规律与实验结果完全一致。  相似文献   

2.
王马法  周智炫  黄洁  罗庆  龙耀  焦德志  柳森 《爆炸与冲击》2021,41(5):053302-1-053302-9
为获得10 km/s超高速撞击成坑特性,采用内爆发射器开展了长径比l/dp为1/2、直径dp为0.8 cm的镁合金弹丸撞击厚5 cm铝靶的超高速撞击实验,获得了铝靶的撞击成坑尺寸和形貌特性,结合文献数据,分析了成坑形貌与8 km/s以下速度撞击坑的差异和弹丸长径比、速度、动能对成坑尺寸的影响。结果表明:典型的撞击坑不仅包含中心成坑区,还包含了破坏区,成坑区近似半球形弹坑,破坏区为自由表面剥落形成的浅坑;坑深Pc/dp为1.5~2.0,坑径dc/dp为3~3.5,坑形系数Pc/dc为0.50,成坑效率E/Vc均值为3.74 kJ/cm3;对于l/dp≤1的弹丸,采用等效直径对坑深进行归一化,归一化后坑深与长径比无关,与速度的2/3次幂成线性关系。  相似文献   

3.
4.
5.
6.
It is usually assumed that for geometrically similar bodies the state of the boundary layer and the location of the laminar-turbulent transition region are determined by the principal similarity parameters-the Mach M and Reynolds Re numbers. However, it has recently been found that at supersonic velocities the parameter (/U), calculated from the free-stream velocity and viscosity and having the dimension of length, has a considerable influence on the transition.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 30–34, March–April, 1972.  相似文献   

7.
The experimental equipment, model, test conditions, and methods used for determining the streamwise damping on a setup with free oscillations on rolling bearings are described. Characteristics of aerodynamic damping of the model with two positions of the rotation axis and Mach numbers M = 2, 4, and 6 are measured. Irregular oscillations of the model with a greater displacement of the rotation axis with respect to the longitudinal axis are found to arise at M = 2.  相似文献   

8.
9.
对直径为8mm的K9玻璃球进行了加载速度为2×10-7和2×10-6m/s的准静态单轴压缩实验以及加载速度为3.4、7.1和10.6m/s的动态单轴压缩实验,研究了K9玻璃单颗粒破碎强度的Weibull分布特性,结合破碎产物的形貌特征,分析了不同加载速度下脆性材料拉伸破坏机制和剪切破坏机制的转变过程,提出了一种拉剪耦合的时序破坏模型,由此揭示了加载速度与3个破坏区的关系。考虑拉伸和剪切失效准则,应用ABAQUS软件进行数值模拟,并初步验证了该破坏模型的冲击过程。研究结果对于认识脆性颗粒材料的动态破坏具有很好的参考意义。  相似文献   

10.
A dynamic multiscale simulation method has been used to study the nanoscale material removal processes for single crystals. The model simultaneously captures the atomistic mechanisms during material removal from the free surface and the long-range mobility of dislocations and their interactions without the computational cost of full atomistic simulations. The method also permits the simulation of system sizes that are approaching experimentally accessibly systems, albeit in 2D. Simulations are performed on single crystal aluminum to study the atomistic details of material removal, chip formation, surface evolution, and generation and propagation of dislocations for a wide range of tool speeds (20-800 m/s) at room temperature. The results from these simulations demonstrate the power of the developed method in capturing both long-range dislocation plasticity and short-range atomistic phenomena during tool advance. In addition, we have investigated the effect of the scratching depth during the material removal process. Fluctuations of scratching tangential force are related to dislocation generation events during the material removal process. A transition from dislocation generation and glides at lower tool speeds to localized amorphization at high tool speeds is found to give rise to an optimal tool speed for low cutting forces.  相似文献   

11.
Commercially available anemometers generally are used at air velocities above the cm/s range. The present contribution deals with a micro-anemometer developed for measuring air velocities in the cm/s range. For the calibration at these low velocities a calibration unit has been built which creates air velocities in this range with an accuracy of the order of one percent.  相似文献   

12.
13.
A previous study by one of the present authors [1] listed a number of works dedicated to calculation of aerodynamic characteristics of aircraft of complex physical construction at supersonic velocities. A method for calculating the flow around a system of small-scale bearing surfaces was developed. The method reduces to determination of the velocity potential with subsequent differentiation to determine pressure. The present study will present a method of calculating stationary aerodynamic characteristics of aircraft of extensive size at supersonic velocities, in which the basic unknown function is the perturbed pressure p. Eliminating numerical differentiation from the calculation permits an increase in accuracy of the results obtained. The problem is solved for an entire airplane with consideration of the craft's thickness.Translated from Ivestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 96–102, May–June, 1978.  相似文献   

14.
We consider the decomposition of a teflon thermal protective coating along the generatrix of a blunted solid of revolution for various Mach numbers and pressures of the incident flow. On the basis of preliminary parametric study of the equations of a laminar boundary layer with pressure gradient, calculation of the teflon decomposition parameters is reduced to solution of a system of nonlinear and transcendental equations. It is shown that the temperature distribution and decomposition rate along the generatrix of the solid of revolution have a monotonie character, and that the effective enthalpy of the material remains constant along the body. A simple approximate formula is proposed for calculation of the teflon decomposition rate.  相似文献   

15.
The results are given of experimental investigations into three-dimensional separation of a turbulent boundary layer in the neighborhood of oblique shock waves, wedge-shaped obstacles, and sweptback steps at Mach numbers M = 2, 2.25, 2.5, 3, 4 and Reynolds numbers Re = u/v = (30–36)· 106 m–1. The characteristic regimes of the separated flows are considered. There is a discussion of the results of comparison and generalization of the pressure distribution in the two- and three-dimensional separation regions, and empirical dependences are also given for determining some geometrical parameters of these regions. An analogy is found in the characteristic pressures, and pressure distribution for a number of two- and three-dimensional separation flows, which suggests that one could use some of the known methods of analysis of two-dimensional separation of a turbulent boundary layer to calculate estimates for the three-dimensional case. This is confirmed by a comparison of calculated and experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–50, May–June, 1979.I am grateful to A. M. Kharitonov and V. S. Dem'yanenko for helpful comments made during the work and for discussion of this paper, and also to V. M. Filatov for assistance in some of the experiments.  相似文献   

16.
A method using symmetrically bent V-shaped hot-wires has been developed for the accurate measurement of low-speed turbulence. Directional characteristics of V-shaped hot-wires at low velocities are investigated, and a generalized expression is derived for the effective cooling velocity. The measurement with V-shaped hot-wires in a pseudo turbulent field, which is artificially produced by shaking the hot-wires with an accurately known motion in a steady flow, has confirmed that the expression for the effective cooling velocity is also valid for instantaneous velocity fluctuations. The accuracy of a practical technique comprising two V-shaped hot-wires in an X arrangement is investigated by an error analysis in simulated Gaussian velocity fields using a digital computer.  相似文献   

17.
Optimum porosity of wind tunnel walls at low supersonic velocities   总被引:1,自引:0,他引:1  
  相似文献   

18.
Infinitely thin wings weakly perturbing a supersonic flow of perfect gas are investigated. The flow problem is solved in a linear formulation [1]. The shape of the wing in plan and the Mach number M of the oncoming flow are specified. The optimal wing surface is determined as a result of finding the function of the local angles of attack M(x, z) which ensures a minimum of the drag coefficient cx when there are limitations in the form of equalities on the lift coefficient cy and the pitching moment mz. A separationless flow regime is realized on the optimal wing for the given number M, and its subsonic leading edge does not experience a load [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 154–160, November–December, 1985.  相似文献   

19.
A large number of investigations have been carried out to study the aerodynamic characteristics of grids and permeable plates completely covering a pipe section [1]. The theoretical bases of the external aerodynamics of permeable bodies are established in [2], where the concept of a uniformly permeable surface is introduced and the problem of flow past a permeable plate at a small angle of attack is solved. Papers [3, 4] are devoted to the solution of problems of a jet flow of ideal incompressible fluid past a permeable wedge and a plate. The flow past a wedge with a high degree of permeability at low subsonic velocities was investigated theoretically and experimentally in [5]. Papers [6, 7] are devoted to the experimental investigation of the aerodynamic characteristics of plates and disks at low subsonic velocities. The results of the experimental investigations of permeable bodies are given in [8]. In the present paper the aerodynamic characteristics of permeable disks positioned perpendicular to the direction of the oncoming flow are investigated experimentally in a wide range of variation of the perforation parameters and the subsonic free-stream flow velocities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 123–128, July–August, 1986.  相似文献   

20.
Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region.The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号