首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
郭雨曦  宋天歌  孙瑜珊  喻倩  窦海洋 《色谱》2021,39(11):1247-1254
淀粉颗粒粒径与分子尺寸分别在1~100μm和20~250 nm之间,是影响淀粉功能特性的重要因素之一.非对称场流分离(AF4)是一种基于样品与外力场相互作用机制的分离技术,已应用于表征淀粉分子尺寸分布.商品化的AF4系统的粒径检测范围为1 nm~10μm,对于淀粉颗粒粒径表征具有一定的局限性.该文研制了AF4分离系统;...  相似文献   

2.
采用非对称场流分离技术(Asymmetrical flow field-flow fractionation,AF4)对标准聚苯乙烯颗粒粒径进行表征。利用非对称场流分离仪以0.1%SDS(十二烷基磺酸钠)和0.02%NaN3的水溶液为流动相,测定标准的聚苯乙烯纳米颗粒在流体流场作用下通过分离腔室的保留时间,以确定纳米颗粒的平均粒径。优化了聚焦时间、横向流速、进样量、主体流速等实验条件,建立了利用AF4准确表征纳米颗粒的方法,并与扫描电镜(Scanning electron microscope,SEM)的表征结果进行比较。结果表明,AF4的表征结果比SEM更接近于聚苯乙烯颗粒的标准粒径,具有更高的稳定性和准确度。本方法可作为纳米粒径表征的一种准确方法。  相似文献   

3.
通过自组装的非对称场流分离系统(AF4)与紫外可见光检测器联用分离表征了笼养鸡蛋、柴鸡蛋、鹌鹑蛋和鸭蛋蛋黄浆质中的低密度脂蛋白(LDL)。在近似蛋黄浆质生理条件下,研究了进样量、交叉流流速、膜的类型对AF4蛋黄浆质中LDL分离表征的影响;考察了该方法的精密度。在优化的AF4分析条件下,检测出了笼养鸡蛋、柴鸡蛋、鹌鹑蛋和鸭蛋蛋黄浆质中LDL的水力学粒径分布。LDL的AF4洗脱峰高和峰面积的日内精密度分别为1.3%和1.9%(n=7),日间精密度分别为2.4%和2.3%(n=7)。研究结果表明,该方法可用于分离禽类蛋黄浆质中的LDL,同时能够得到LDL水力学粒径分布。  相似文献   

4.
场流分离作为一类分离技术可分离、提纯和收集流体中的悬浮物微粒,它是将流体与外场联合作用于待分离物质,利用样品质量、体积和密度等性质的差异实现分离,然后利用分离物质的保留性质来确定样品颗粒粒径及分布、分子量等性质。其中非对称流场流分离能够提供连续的、高分辨率的分离,近年来越来越受到科研人员的欢迎。本文介绍了场流分离的分类及其原理,重点介绍了非对称流场流分离的原理及其应用,包括非对称流场流分离的影响因素及与其他分离技术的比较;最后总结了该技术的发展趋势。  相似文献   

5.
梁启慧  吴迪  邱百灵  韩南银 《色谱》2017,35(9):918-926
场流分离是生物分析领域一项成熟的技术,将流体与外场联合作用于待分离物质,利用分析物某些理化参数上的差异进行分离。非对称流场流是其重要的分支之一,所施加的外力场为垂直方向的液流,分离过程于开放型的通道中在某种组成的载液迁移推动下进行,主要根据分析物与垂直施加的第二维液流之间的相互作用完成分离。非对称流场流在蛋白质、蛋白质复合物、衍生纳米级/微米级粒子、亚细胞单元和聚合物等分离中的应用日益广泛,主要归功于其直接应用于生物样品时可进行无损分离,因此生物分析物如蛋白质可以在生物友好型的环境中完成分离而不改变其构型,也无需使用降解载液。分离设备便于保持无菌状态,分析物可在生物友好的环境中维持其自然状态。该文简要描述了场流分离原理并罗列出其在生物分析领域一些卓越的发展和应用。  相似文献   

6.
7.
梁启慧  杨奕  邵兵  高也  宋宇  韩南银 《色谱》2018,36(5):480-486
非对称流场流分离技术对于蛋白质等生物大分子的分析具有温和、分离范围广的特点。然而,在场流分离通道中,受载液组成的影响而产生的蛋白质与通道膜的相互作用和蛋白质在通道内的聚集行为,会影响分析物的回收率和尺寸形态,这些现象一定程度上限制了场流分离仪器的进一步应用。该文研究了载液组成对于卵白蛋白在非对称流场流分离中膜吸附和聚集行为的影响。考察了不同pH (6.2、7.4、8.2)、阳离子种类(Na+、K+、Mg2+)及多种离子强度(0~0.1 mol/L)等条件对卵白蛋白洗脱过程的影响。结果表明a)载液的离子强度越大,卵白蛋白的吸附和聚集行为越严重;b) pH和蛋白质的等电点pI的相对大小决定了蛋白质的表面电荷,从而影响蛋白质的吸附聚集行为;c)二价阳离子Mg2+更易引发通道中蛋白质的吸附和聚集。这些结果有助于今后使用非对称流场流分离技术分析蛋白质样品时,改善载液组成以获得更高的回收率,降低蛋白质聚集作用,对AF4更广泛地应用于蛋白质生化分析中有较好的参考价值。  相似文献   

8.
本研究使用蒸气法-芯片级非对称场离子迁移谱技术(FAIMS)检测部分爆炸物和毒品。通过14~21d的连续测试得到目标物的扩散速率。在设定条件下,实现了对爆炸物和毒品的良好分析。同时针对FAIMS检测技术开发出了新的数据识别方法,使FAIMS技术以超高的灵敏度完成了对部分爆炸物和毒品的有效分辨,检测浓度范围约为33~100ng/L。该方法无需前处理、方便、快捷,灵敏度高,具有很好的应用前景。  相似文献   

9.
李阳  杨奕  邵兵  邹悦  宋宇  舒琳  梁启慧  韩南银 《色谱》2019,37(4):398-403
应用非对称流场流分离(AF4)技术结合超高效液相色谱-四极杆飞行时间质谱(UPLC-QTOF-MS)对过敏原蛋白表位进行筛选。将选择的过敏原蛋白(虾原肌球蛋白,TM)酶解后经UPLC-QTOF-MS分析,建立蛋白质肽谱。将TM酶解后的肽段与免疫球蛋白E混合孵育30 min,孵育过程中含有抗原表位的特异性肽段与免疫球蛋白E(IgE)结合,未结合的肽段仍留在溶液中。将孵育后的溶液进行AF4分离,已结合的肽段随IgE一起由出口流出,未结合的肽段透过分离通道膜,滤出至废液。收集出口流出的组分进行UPLC-QTOF-MS分析,与蛋白质肽谱匹配,找到特异性肽段,进而检测抗原表位。本研究扩展了非对称流场流分离技术的应用,对过敏原蛋白表位的检测进行了初步探索,为过敏原蛋白表位的研究提供了一种新的研究策略。  相似文献   

10.
芯片级高场非对称波形离子迁移谱技术检测危险品   总被引:1,自引:0,他引:1  
建立了吸气法-芯片级高场非对称波形离子迁移谱(FAIMS)技术,设置进样温度为50℃,载气与样品气流量分别为1500和100 mL/min时,测定了10种国家交通部门规定严禁携带的易燃易爆危险品。实验结果表明,利用FAIMS技术可以有效检测多种危险品。实验得到了10种危险品的FAIMS图谱,并对其进行了指纹识别。利用扩散管辅助技术得到10种物质的检测浓度范围约为0.1~20 mg/L。此方法方便快速,灵敏度高,具有很好的应用前景。  相似文献   

11.
The separation efficiencies of three different asymmetrical flow field-flow fractionation (AF4) channel designs were evaluated using polystyrene latex standards. Channel breadth was held constant for one channel (rectangular profile), and was reduced either linearly (trapezoidal profile) or exponentially (exponential profile) along the length for the other two. The effective void volumes of the three channel types were designed to be equivalent. Theoretically, under certain flow conditions, the mean channel flow velocity of the exponential channel could be arranged to remain constant along the channel length, thereby improving separation in AF4. Particle separation obtained with the exponential channel was compared with particle separation obtained with the trapezoidal and rectangular channels. We demonstrated that at a certain flow rate condition (outflow/inflow rate = 0.2), the exponential channel design indeed provided better performance with respect to the separation of polystyrene nanoparticles in terms of reducing band broadening. While the trapezoidal channel exhibited a little poorer performance than the exponential, the strongly decreasing mean flow velocity in the rectangular channel resulted in serious band broadening, a delay in retention time, and even failure of larger particles to elute.  相似文献   

12.
Asymmetrical flow field-flow fractionation (AsFlFFF) was coupled online with multiangle light scattering (MALS) to study the changes in the molecular weight and the size distribution of the corn starch during carboxymethylation. A corn starch was derivatized with sodium chloroacetate in alcoholic medium under alkaline condition to produce carboxymethyl starches (CMS) having various degrees of substitution (DS). The change in thermal characteristics and granule structure of the native corn starch and CMS were compared using Thermogravimetric analysis and scanning electron microscope. The ionic strength of the carrier liquid (water with 0.02% NaN3) was optimized by adding 50 mM NaNO3 to minimize the interactions among the starch molecules and between the starch molecules and the AsFlFFF membrane. A field-programmed AsFlFFF allowed determination of the molecular weight distribution (MWD) of starches within about 25 min. It was found that carboxymethylation of starch results in reduction in the molecular weight due to molecular degradation by the alkaline treatment. The weight-average molecular weight (Mw) was reduced down to about 4.4 × 105 from about 7.2 × 106 when DS was 0.14. It seems AsFlFFF coupled with MALS (AsFlFFF/MALS) is a useful tool for monitoring the changes taking place in the molecular weight and the size of starch during derivatization.  相似文献   

13.
Flow field-flow fractionation (flow FFF), a separation technique for particles and macromolecules, has been used to separate carbon nanotubes (CNT). The carbon nanotube ropes that were purified from a raw carbon nanotube mixture by acidic reflux followed by cross-flow filtration using a hollow fiber module were cut into shorter lengths by sonication under a concentrated acid mixture. The cut carbon nanotubes were separated by using a modified flow FFF channel system, frit inlet asymmetrical flow FFF (FI AFIFFF) channel, which was useful in the continuous flow operation during injection and separation. Carbon nanotubes, before and after the cutting process, were clearly distinguished by their retention profiles. The narrow volume fractions of CNT collected during flow FFF runs were confirmed by field emission scanning electron microscopy and Raman spectroscopy. Experimentally, it was found that retention of carbon nanotubes in flow FFF was dependent on the use of surfactant for CNT dispersion and for the carrier solution in flow FFF. In this work, the use of flow FFF for the size differentiation of carbon nanotubes in the process of preparation or purification was demonstrated.  相似文献   

14.
A new system design and setup are proposed for the combined use of asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) within the same instrumentation. To this purpose, three innovations are presented: (a) a new flow control scheme where focusing flow rates are measured in real time allowing to adjust the flow rate ratio as desired; (b) a new HF5 channel design consisting of two sets of ferrule, gasket and cap nut used to mount the fiber inside a tube. This design provides a mechanism for effective and straightforward sealing of the fiber; (c) a new AF4 channel design with only two fluid connections on the upper plate. Only one pump is needed to deliver the necessary flow rates. In the focusing/relaxation step the two parts of the focusing flow and a bypass flow flushing the detectors are created with two splits of the flow from the pump. In the elution mode the cross-flow is measured and controlled with a flow controller device. This leads to reduced pressure pulsations in the channel and improves signal to noise ratio in the detectors. Experimental results of the separation of bovine serum albumin (BSA) and of a mix of four proteins demonstrate a significant improvement in the HF5 separation performance, in terms of efficiency, resolution, and run-to-run reproducibility compared to what has been reported in the literature. Separation performance in HF5 mode is shown to be comparable to the performance in AF4 mode using a channel with two connections in the upper plate.  相似文献   

15.
The use of asymmetrical flow field-flow fractionation (AsFlFFF) in the study of heat-induced aggregation of proteins is demonstrated with bovine serum albumin (BSA) as a model analyte. The hydrodynamic diameter (dh), the molar mass of heat-induced aggregates, and the radius of gyration (Rg) were calculated in order to get more detailed understanding of the conformational changes of BSA upon heating. The hydrodynamic diameter of native BSA at ambient temperature was ∼7 nm. The particle size was relatively stable up to 60 °C; above 63 °C, however, BSA underwent aggregation (growth of hydrodynamic diameter). The hydrodynamic diameters of the aggregated particles, heated to 80 °C, ranged from 15 to 149 nm depending on the BSA concentration, duration of incubation, and the ionic strength of the solvent. Heating of BSA in the presence of sodium dodecyl sulfate (1.7 or 17 mM) did not lead to aggregation. The heat-induced aggregates were characterized in terms of their molar mass and particle size together with their respective distributions with a hyphenated technique consisting of an asymmetrical field-flow fractionation device and a multi-angle light scattering detector and a UV-detector. The carrier solution comprised 8.5 mM phosphate and 150 mM sodium chloride at pH 7.4. The weight-average molar mass (Mw) of native BSA at ambient temperature is 6.6 × 104 g mol−1. Incubation of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h resulted in aggregates with Mw 1.2 × 106 and 1.9 × 106 g mol−1, respectively. The average radius of gyration and the average hydrodynamic radius of the heat-induced aggregate samples were calculated and compared to the values obtained from the size distributions measured by AsFlFFF. For comparison static light scattering measurements were carried out and the corresponding average molar mass distributions of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h gave aggregates with Mw 1.7 × 106 and 3.5 × 106 g mol−1, respectively.  相似文献   

16.
Asymmetrical flow field-flow fractionation (AsFlFFF) was used to determine the size distribution of drug-loaded core/shell nanoparticles which have a lipid core of lecithin and a polymeric shell of a Pluronic. AsFlFFF provided separation of the drug-loaded core/shell nanoparticles from smaller coreless polymeric micelles, thus allowing accurate size analysis of the drug-loaded nanoparticles without interference by the coreless micelles. It was found from AsFlFFF that the drug-loaded nanoparticles have broad size distributions ranging from 100 to 600 nm in diameter. It was also found that, after the nanoparticles had been stored for 70 days, they disappeared as a result of self-degradation. Being a separation technique, AsFlFFF seems to be more useful than transmission electron microscopy or dynamic light scattering for size analysis of core/shell nanoparticles, which have broad and bimodal size distributions. Figure Separation by AsFlFFF  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号