首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The authors performed photodynamic therapy (PDT), avoiding any hyperthermic effects, using a newly developed diode laser and photosensitizer, mono-L-aspar-tyl chlorin e6 (NPe6), of Meth-A fibrosarcoma implanted in mice and achieved tumor therapeutic benefit. The photodynamic light treatment was performed 5 h following the photosensitizer administration. With 5.0 mg/kg NPe6 and light doses of 50, 100, 150 and 200 J/cm2, the tumor cure rates were 20, 50, 70 and 90%, respectively. With 100 J/cm2 laser exposure and NPe6 doses of 1.25, 2.5, 5.0, 7.5 and 10.0 mg/kg, the tumor cure rates were 0, 20, 50, 70 and 90%, respectively. A charge-coupled device (CCD) camera system was employed to measure the NPe6 fluorescence intensity correlating with the residual amount of the photosensitizer at deferent depth from the tumor surface. The ratios of the NPe6 fluorescence intensity at 3 mm from the tumor surface following 50, 100, 150 and 200 J/cm2 laser exposure to no laser exposure were 0.73, 0.36, 0.22 and 0.16, respectively. With samples sectioned at 1 mm depth, after 50 J/cm2 and the same photosensitizer dose (5 mg/kg) this ratio was 0.19. These results suggest that a certain increase in the tumor tissue level of NPe6 and a certain increase of laser light dose reaching deeper layers of tumor caused an increase in percent cure. In addition, the effectiveness of PDT depends on the total laser dose reaching deeper layers of tumors. Furthermore, the effectiveness of PDT tends to correlate with the amount of NPe6 photobleaching by PDT.  相似文献   

2.
Abstract— The quantum yield of the photodynamic inactivation of lysozyme increases in the sequence acridine orange, methylene blue, proflavine and acriflavine (1:5:6:12). At least up to protein concentrations of 0.1 m M , singlet oxygen is exclusively responsible for the inactivation of the enzyme. For methylene blue, acriflavine and proflavine the quantum yields decrease considerably with increasing dye concentrations. From measurements in H2O and D2O buffer solutions it was concluded that in the case of methylene blue the effect is mainly caused by the quenching of singlet oxygen [rate constant (3–4) × 108 M −1 s−1]. For the acridine sensitizers both singlet oxygen and dye triplet quenching processes have to be taken into consideration. It has been found that all sensitizers act as competitive inhibitors of the enzymatic reaction of lysozyme. However, the dye-protein interaction near the active center cannot be responsible for the observed dye self-quenching effect.  相似文献   

3.
Abstract— The absolute PE quantum yield curves of chls a and b ,.chin, and phytol were examined over the wavelength range 500-180 nm. In the long wavelength region (500-240 nm) quantum yields are below 5 × 10-6 electrons per incident photon. Below 240 nm the quantum yields rise sharply. The chls and chin exhibit similar yield curves; measured yields were of order 5 × 10-6 electrons per incident photon at 240 nm, 1 × 10-4 at 220 nm, and 1 × 10-3 at 180 nm. These yields are at least 2 orders of magnitude greater than those of the amino acids and more than three orders of magnitude greater than that of phytol over this wavelength region. Photoemission observed in chl thin films is due to the porphyrin moiety of the molecule. High contrast is obtained in PE micrographs of chin deposited on substrates of bovine serum albumin, dipalmitoyl phosphatidylcholine, or starch. Chl is expected to be the dominant photoemissive component of thylakoid membranes and accounts for the image contrast observed previously in PE micrographs of spinach chloroplasts.  相似文献   

4.
Abstract— The ability of UV-irradiation (254 nm) to induce formation of RNA-protein crosslinks in tobacco mosaic virus (TMV) particles have been studied by Cs2SO4 density gradient centrifugation, analytical centrifugation, nitrocellulose filter binding and two-dimensional peptide mapping. RNA-protein crosslinks were found to be formed on UV-irradiation of TMV, but the parallel process of UV-induced RNA chain breakage complicated their quantitation. Using speciall devised equations, the quantum yield of RNA-protein crosslink formation was found to be 0.65 × 10−5 and that of RNA chain break formation 0.95 × 10−5.  相似文献   

5.
Abstract— The photodynamic therapy (PDT) efficiency of five phthalocyanines, chloroaluminum phthalocyanine (AlPc), dichlorosilicon phthalocyanine (SiPc), bis (tri- n -hexylsi-loxy)silicon phthalocyanine (PcHEX), bis (triphenyl-siloxy)silicon phthalocyanine (PcPHE) and nickel phthalocyanine (NiPc), was assessed on two leukemic cell lines TF-1 and erythroieukemic and B lymphoblastic cell lines, Daudi, respectively. AlPc showed the best photocytotox-icity leading to 0.008 surviving fraction at 2 × 10−9 M for TF-1 and 4 × 10−9 M for Daudi. At 5 × 10−7 M , SiPc and PcHEX induced a significant photokilling, whereas NiPc and PcPHE were inactive. Laser flash photolysis and photoredox properties of the phthalocyanines were investigated to try to relate these parameters with the biological effects. AlPc showed the longest triplet lifetime: 484 fis in dimethyl sulfoxide/H2O. This value was increased up to 820 u.s when AlPc was complexed with human serum albumin used as a membrane model. Such an enhancement was not observed with the silicon phthalocyanines. Upon irradiation, all the phthalocyanines generated singlet oxygen with 0.29–0.37 quantum yield values. The reduction potentials of the excited states obtained from measurement in the ground state and energy of the excited triplets show that AlPc is the best electron acceptor. The in vitro photocytotoxicity observed and the measured parameters are in agreement with a key role of electron transfer in PDT assays involving these phthalocyanines.  相似文献   

6.
Abstract— The fluorescence decay profiles, relative quantum yield, and transmission of the phycoerythrin a subunit, isolated from the photosynthetic antenna system of Nostoc sp., were measured using single picosecond laser excitation. The fluorescence decay profiles were found to be intensity independent for the intensity range investigated (4 × 1013 and 4 × 1015 photons-cm-2 per pulse). The decay profiles were fitted to a model assuming both chromophores absorb and fluoresce. The inferred total deactivation rates for the two chromophores, in the absence of energy transfer and when the effects of the response time of the streak camera and the finite pulse width are properly included, are 1.0 × 1010s' and 1.0 × 109 s 1 for the s and f chromophores. respectively, whereas the transfer rate between the two fluorophorcs is estimated to be 1.0 × 1010 s−1 giving a s→ f transfer rate on the order of (100 ps)−1. Steady-atate polarization measurements were found to be equal to those calculated using the rate parameters inferred from the kinetic model fit to the fluorescence decays. The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is suggestive of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated α subunits for the intensity range investigated (4 × 1013 to 4 × 1015 photons-cm 2 per pulse).  相似文献   

7.
Abstract— A sensitive near-infrared detection system incorporating improvements to existing methodologies has been used to characterize the sodium azide quenching of the steady-state luminescence of singlet molecular oxygen at 1270 nm. Stern-Volmer plots which were linear up to 80% quenching of the 1O2 generated by rose bengal and eosin Y yielded a rate constant of 5.8 ± 0.1 times 108 M −1 s−1 for the quenching of 1O2 in water, while the rate constants obtained in deuterium oxide with the same sensitizers were 6.28 times 108 M −1 s−1 and 6.91 times 108 M −1 s−1 respectively. A flow system minimized the effects of photobleaching of the rose bengal. With a mercury arc light source, the instrument can be used in photosensitization experiments to detect low levels of 1O2 production in aqueous media.  相似文献   

8.
Abstract— Anionic polyelectrolytes functionalized with the 5-deazaflavin group (dFl) were synthesized. The lifetime of the triplet excited dFl in the polyelectrolytes with a 2-mol% dFl content (AdFl-2) was about 10 times longer than that of a low molecular weight analog (AdFl-M). 2-Mercaptoethanol (RSH) reduced the triplet dFl with the rate constant of k red= 2.01 × 108 M −1 s−1 for AdFl-M and k red= 4.4 × 107 M −1 s−1 for AdFl-2. A zwitterionic viologen (SPV) oxidized the triplet dFl with the rate constant of k red= 3.69 × 109 M −1 s−1 for AdFl-M and k ox= 7.4 × 108 M−1 s−1 for AdFl-2. The smaller rate constants for the polymer system were discussed in terms of the hindering effect of the macromolecular microenvironment. The back electron transfer was shown to be drastically slowed in the AdFl-2-SPV system as a result of the intensive electrostatic effect of the polyelectrolytes. The buildup of the viologen radicals was studied under the steady-state illumination of the three component systems including viologen and RSH. The dFl group was demonstrated to serve as a very efficient photosensitizer in the oxidative cycle in case back electron transfer was retarded. This is the case of the AdFl-2-SPV system which gave the quantum yield of about 0.4 for the SPV buildup. By comparison, the AdFl-2-MV2+ system resulted in a much slower buildup of MV +radicals.  相似文献   

9.
Porphyrins used as sensitizers for the photodynamic therapy (PDT) of tumors are progressively destroyed (photobleached) during illumination. If the porphyrin bleaches too rapidly, tumor destruction will not be complete. However, with appropriate sensitizer dosages and bleaching rates, irreversible photodynamic injury to the normal tissues surrounding the tumor, which retain less sensitizer, may be significantly decreased. This paper surveys the quantum yields and kinetics of the photobleaching of four porphyrins: hematoporphyrin (HP), Photofrin II (PF II), tetra(4-sulfonatophenyl)porphine (TSPP) and uroporphyrin I (URO). The initial quantum yields of photobleaching, as measured in pH 7.4 phosphate buffer in air, were: 4.7 x 10(-5), 5.4 x 10(-5), 9.8 x 10(-6), and 2.8 x 10(-5) for HP, PF II, TSPP and URO respectively; thus, the rates of photobleaching are rather slow. Low oxygen concentration (2 microM) significantly reduced the photobleaching yields. However, D2O increased the yields only slightly, and the singlet oxygen quencher, azide, had no effect, even at 0.1 M. Photosensitizing porphyrins in body fluids, cells and tissues may be closely associated with various photooxidizable molecules and electron acceptors and donors. Therefore, selected model compounds in these categories were examined for their effects on porphyrin photobleaching. A number inhibited and/or accelerated photobleaching, depending on the compound, the porphyrin and the reaction conditions. For example, 1.0 mM furfuryl alcohol increased the photobleaching yields of HP and URO more than 5-fold, with little effect on PF II or TSPP. In contrast, the electron acceptor, methyl viologen, increased the photobleaching yield of TSPP more than 10-fold, with little accelerating effect on the other porphyrins. These results suggest that the mechanism(s) of the photobleaching of porphyrin photosensitizers in cells and tissues during PDT may be complex.  相似文献   

10.
FLUORESCENCE OF 5-METHYLCYTOSINE   总被引:2,自引:0,他引:2  
Abstract— 5-Methylcytosine and 5-methyldeoxycytidylic acid are fluorescent in aqueous solution at room temperature and neutral pH. 5-Methylcytosine, 10-3M, pH 8.5, 25°C, has a quantum yield of 5 ×10-4, 5-Methyldeoxycitydylic acid, 10-4M, pH 7.5, 20°C, has a quantum yield of 8 × 10-4. Emission maxima are 2.91 and 2.80μ-1. At pH 14, the quantum yield of 5-methylcytosine is 1.6 × 10-2; the emission maximum is 2.82μ-1. At pH I, the quantum yield of both compounds is less than or equal to 10-4. Both compounds were chromatographically homogeneous, had absorption spectra which agreed with published data, and excitation spectra which agreed closely with absorption spectra.  相似文献   

11.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

12.
Abstract— N,N'-bis(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC), a lipophilic dye with a delocalized positive charge, photosensitizes cells to visible irradiation. In phosphate-buffered saline (PBS), EDKC absorbs maximally at 700 nm (ε= 1.2 × 105 M−1 cm−1) and in methanol, the absorption maximum is at 706 nm (ε= 2.3 × 105 M−1 cm−1). EDKC partitions from PBS into small unilamellar liposomes prepared from saturated phospholipids and into membranes prepared from red blood cells (RBC) and binds to human serum albumin (HSA). The EDKC fluorescence maximum red shifts from 713 nm in PBS to 720–725 nm in liposomes and RBC membranes and the fluorescence intensity is enhanced by factors of 14–35 compared to PBS (φ= 0.0046). EDKC is thermally unstable in PBS (T1/2= 2 h at 1.3 × 10−5 M EDKC), but stable in methanol. In liposomes and RBC membranes, EDKC is 10 times more stable than in PBS, indicating that it is only partially exposed to the aqueous phase. Quenching of EDKC fluorescence in liposomes and RBC membranes by trinitrobenzene sulfonate also indicates that EDKC is not buried within the membranes. Photodecomposition of EDKC was oxygen-dependent and occurred with a low quantum yield (6.4 × 10−4 in PBS). Singlet oxygen was not detected upon irradiation of EDKC in membranes or with HSA since the self-sensitized oxidation of EDKC occurred at the same rate in D2O as in H2O and was not quenched by sodium azide or histidine.  相似文献   

13.
Abstract— Ferrideuteroporphyrin in benzene, water or micelle solutions containing primary or secondary alcohols as well as in pure or basic 2-propanol solutions is clearly reduced to the ferrous state by continuous light irradiation in the Soret region. Quantum yields range between 4 × 10−4 and 3 × 10−2 depending on the solvents used and on the coordination state of the ferric porphyrin. As inferred from laser pulse photolysis experiments, the primary chemical step appears to be the homolytic cleavage of the bond between the ferric ion and a coordinated alcoholate anion leading to the ferrous porphyrin and the alkoxy radical. This cleavage is found to occur within less than 50 ns. The alkoxy radical rearranges leading to the α-hydroxyalkyl radical which reacts with excess ferric porphyrin leading to further reduction. The reaction rate constant for the reaction of α-hydroxyisopropyl radicals is found to be k = (2.1 ± 0.3) × 108 M −1 s−1 in pure 2-propanol. As expected, this rate is greatly increased in basic 2-propanol where α-hydroxyisopropyl radicals deprotonate.  相似文献   

14.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

15.
It is difficult to treat patients with acquired airway stenosis, and the quality of life of such patients is therefore lowered. We have suggested the application of photodynamic therapy (PDT) as a new treatment for airway stenosis and have determined the efficacy of PDT in animal disease models using a second-generation photosensitizer with reduced photosensitivity. An airway stenosis rabbit model induced by scraping of the tracheal mucosa was administered NPe6 (5 mg kg−1), and the stenotic lesion was irradiated with 670 nm light emitted from a cylindrical diffuser tip at 60 J cm−2 under bronchoscopic monitoring. PDT using NPe6 improved airway stenosis ( P  = 0.043) and respiratory stridor. A significant prolongation of survival time was seen in the PDT-treated animals compared to that in the untreated animals ( P  = 0.025) and 44% of the treated animals achieved long-term survival (>60 days). In conclusion, PDT using NPe6 is effective for improvement in airway stenosis.  相似文献   

16.
Abstract— The rate constant for quenching of 1O2 by azide ion in water was determined to be (5.0 ± 0.4) × 108 M −1 s−1 using a variety of sensitizers (including humic acids) and 1O2 acceptors. The apparent second-order rate constant decreases with pH below pH 5.5 in accordance with the protonation of azide ion to form hydrazoic acid (p K a= 4.6). Quenching by hydrazoic acid is at least 2 orders of magnitude slower than by azide ion. Greater than 99% of all interactions between 1O2 and azide ion involve physical quenching rather than chemical reaction. Humic acid triplets are not significantly quenched by azide ion at concentrations less than 2 m M , allowing azide ion quenching to be used as a diagnostic test for the intermediacy of 1O2 in photosensitized oxidations in natural surface waters.  相似文献   

17.
Abstract— Quantum yields for the lumiflavin-sensitized oxidation of guanosine monophosphate and adenosine monophosphate in solution have been measured as functions of oxygen and nucleotide concentration. The quantum yield increases with oxygen concentration at low oxygen concentrations, but quenching of the excited flavin molecule by oxygen results in a fall in quantum yield at higher concentrations. It has also been established that the reciprocal of the quantum yield is linearly related to the reciprocal of the nucleotide concentration. A mechanism in which molecular oxygen reacts with an excited complex formed between triplet lumiflavin and the nucleotide is consistent with these observations.
A value for the second-order rate constant for the quenching of triplet lumifiavin by oxygen of 2·65 × 109 M -1 sec-1 has been obtained.  相似文献   

18.
Abstract— Irradiation of aqueous solutions of plasmid DNA (pUC18) at pH 7.6 with 193 nm laser light results in low yields of prompt single strand breakage (air-saturated sample φssb= [1.5 ± 0.1] ± 10−4, argon-saturated sample φssb= [0.9 ± 0.1] ± 10−4). Treatment of the irradiated DNA samples with Escherichia coli formamidopyrimi-dine-DNA glycosylase (Fpg) protein results in an approximate 20-fold increase in the yield of single strand breakage (air-saturated sample φfpg= [33.1 ± 3.1] ± 10−4, argon-saturated sample φfpg= [23.8 ± 2.6] × 10 4). This result indicates that 193 nm light induces other modification) (most likely of the purine moieties) that are 20 times more abundant than prompt strand breakage within the DNA matrix.  相似文献   

19.
Abstract Porphyrins used as sensitizers for the photodynamic therapy (PDT) of tumors are progressively destroyed (photobleached) during illumination. If the porphyrin bleaches too rapidly, tumor destruction will not be complete. However, with appropriate sensitizer dosages and bleaching rates, irreversible photodynamic injury to the normal tissues surrounding the tumor, which retain less sensitizer, may be significantly decreased. This paper surveys the quantum yields and kinetics of the photobleaching of four porphyrins: hematoporphyrin (HP), Photofrin II (PF II), tetra(4-sulfonatophenyOporphine (TSPP) and uroporphyrin I (URO). The initial quantum yields of photobleaching, as measured in pH 7.4 phosphate buffer in air, were: 4.7 × 10-5, 5.4 × 10-5, 9.8 × 10-5, and 2.8 × 10-5 for HP, PF II, TSPP and URO respectively; thus, the rates of photobleaching are rather slow. Low oxygen concentration (2 μM) significantly reduced the photobleaching yields. However, D2O increased the yields only slightly, and the singlet oxygen quencher, azide, had no effect, even at 0.1 M. Photosensitizing porphyrins in body fluids, cells and tissues may be closely associated with various photooxidizable molecules and electron acceptors and donors. Therefore, selected model compounds in these categories were examined for their effects on porphyrin photobleaching. A number inhibited and/or accelerated photobleaching, depending on the compound, the porphyrin and the reaction conditions. For example, 1.0 mM furfuryl alcohol increased the photobleaching yields of HP and URO more than 5-fold, with little effect on PF II or TSPP. In contrast, the electron acceptor, methyl viologen, increased the photobleaching yield of TSPP more than 10-fold, with little accelerating effect on the other porphyrins. These results suggest that the mechanism(s) of the photobleaching of porphyrin photosensitizers in cells and tissues during PDT may be complex.  相似文献   

20.
Abstract— A fluorescence quantum yield (emission at650–850 nm) of π= (2.3 ± 0.3)10−3 was measured for the red-absorbing form (Pr) of 124-kDa phytochrome from etiolated oat seedlings ( Avena sativa ) upon excitation in the Soret band at Λexc= 380 nm. The small difference between this value and the previously determined quantum yield with Λexc= 640 nm, π= (3.5 ± 0.4)10−3is attributed to a blue-absorbing emitter responsible for the "anomalous" or "blue" emission of the chromoprotein in the region from ca. 400 to 550 nm. The absorption of Pr at 380 nm is consequently somewhat lower than that measured directly from the spectrum. Processes from upper excited states of the Pr phytochromobilin-derived chromophore other than rapid relaxation to the emitting state are not important. A quantum yield of Φ ' 1.2 times 10−3 is estimated for the blue fluorescence. The proportion of the blue emitters relative to Pr appears to be relatively high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号