共查询到20条相似文献,搜索用时 78 毫秒
1.
引入SiO2对SO4^2—/ZrO2超强酸体系的影响 总被引:11,自引:0,他引:11
用共沉淀法和负载法制备了一系列SO4^2-/ZrO2催化剂,详细研究了添加SiO2对SO4^2-/ZrO2超强酸样品的晶化、比表面、硫含量、超强酸性和异丙苯裂解及异丙醇脱水反应的影响。引入SiO2会延迟ZrO2的晶化和晶相转变,减弱SO4^2-/ZrO2体系的超强酸性,但对提高样品的异丙苯裂解和异丙醇脱水反应活性有利。 相似文献
2.
SO4^2—/MXOY型固体超强酸及其催化酯化 总被引:36,自引:0,他引:36
SO4^2-/MXOY型固体超强酸用作酯化反应的催化剂,具有催化活性高、选择性好、易与产品分离、无污染、可重复利用等优点。本文综述了SO4^2/MXOY型固体超强酸的研究进展及其在酯化反应中的催化作用。探讨了这类固体超强酸的制备条件、表面结构及其用作酯化催化剂的性能和寿命等问题。 相似文献
3.
4.
SO4^2—/ZrO2超强酸催化剂的XPS研究 总被引:2,自引:0,他引:2
对XPS技术对不同焙烧温度,不同H2SO4浓度制得的SO4^2-/ZrO2和不同反应温度下反应后SO4^2-/ZrO2超强酸催化剂的表面元素电子结合能及表面元素的相对含量进行了分析。结果表明,焙烧温度和反应温度对催化剂表面元素Zr,O,S的氧化态没有影响,但Zr,O的电子结合能随温度的升高而下降;O(-2)至少可归结为三种存在形式的氧;SO4^2-可以在催化剂表面富集,且当H2SO4浓度为0.5m 相似文献
5.
SO^2—4/TiO2和SO^2—4/Fe2O3固体超强酸研究 总被引:31,自引:0,他引:31
用XRD、TG-DTG、SEM和化学分析等手段研究了浸渍H2SO4的无定形TiO2和Fe2O3在焙烧过程中的晶化、相变、失水及失硫情况,总结出SO^2-4/MxOy型固体超强酸具有与SO^2-4/ZrO2体系相同的形成规律。用IR光谱和常温正戊烷异构化反应对SO^2-4/TiO2/Fe2O3的超强酸性进行了表征,表明它们与SO^2-4/ZrO2体系具有相似的表面酸位结构,无水状态主要为L酸位,吸水 相似文献
6.
固体超强酸AlCl3.Fe2(SO4)3的研究 总被引:2,自引:0,他引:2
自60年代末Olah等人研究液体超强酸以来,超强酸的催化作用的研究迅速发展。由于多相催化比均相催化具有许多优越性,人们对固体超强酸催化剂进行了广泛的研究。Ma-gnatta等报道AlCl_3与聚苯磺酸络合物在85℃下,能使已烷裂解异构化。Olah等发展了全氟磺酸树脂Nafion-H固体超强酸催 相似文献
7.
镝对固体超强酸催化剂ZrO2-Dy2O3/SO42--HZSM-5的酸性和稳定性的影响 总被引:9,自引:0,他引:9
合成了固体超强酸催化剂ZrO2-Dy2O3/SO4^2-,并将其负载于分子筛HZSM-5上,制成复合型固体超强酸催化剂ZrO2-Dy2O3/SO4^2-HZSM-5)以下简称催化剂ZDSH),采用Hammett批示剂法,吸附吡淀的TPD法,考察催化剂ZDSH的酸强度及其分布;通过热重分析(TGA)、差热分析(DTA)方法,考察镝对催化剂ZDSH稳定性的作用;运用红外光谱(IR)法,分析催化剂ZDS 相似文献
8.
SO^2—4/ZrO2超强酸制备方法的改进 总被引:18,自引:0,他引:18
用BET、XRD、流动指法剂法、化学分析、低温正丁烷异构化反应等手段研究了制备条件对ZrO2前驱体和SO^2-4/ZrO2超强酸性能的影响。实验结果表明,采用不同的制备条件,ZrO2前驱体的比表面可相差1.8倍,SO^2-4/ZrO2的酸强度相差约1000倍,SO^2-4/ZrO2的正丁烷异构化反应活性相差约300倍,ZrO2最高比表面可达245m^2/g,SO^2-4/ZrO2酸强度为H0≤-1 相似文献
9.
固体超强酸催化剂SO4^2——MoO3—ZrO2中MoO3的作用与催化性能 总被引:15,自引:0,他引:15
根据固体超强酸催化剂SO4^2-MoO3-ZrO2的特点,结合活性评价结果,用BET、DTA/TG、XRD、LRS等方法,对其进行了物性表征,考察了催化剂的结构形态、性质随催化剂组成的变化,以及催化剂的物性结构特点与催化活性的关系。研究结果表明,MoO3含量对催化剂活性有着显著影响;催化剂的比表面积随MoO3的含量变化存在极大值;MoO3具有延迟ZrO2晶化、稳定SO4^2-的作用,并提高了SO4 相似文献
10.
纳米固体超强酸SO2-4/ZrO2-SiO2的研究 总被引:8,自引:3,他引:8
采用纳米化学制备技术合成了新型的纳米固体超强酸催化剂SO2-4/ ZrO2-SiO2.该催化剂对醋酸和脂肪醇的酯化反应有很好的催化作用,并具有耐水性强,再生容易,可重复使用,不腐蚀设备,不污染环境等优点,是对环境友好并具有应用前景的绿色工业催化剂.用XRD、XPS、TEM、IR和化学分析等手段分析了SO2-4 / ZrO2-SiO2的晶化过程、比表面积、含硫量.结果表明,浸渍液H2SO4浓度、焙烧温度、沉淀条件、比表面积和含硫量均明显影响SO2-4 / ZrO2-SiO2的酸强度及催化活性.SO2-4 / ZrO2-SiO2最佳制备条件陈化温度为0℃,浸渍液H2SO4浓度为0.5 mol/ L,焙烧温度为650℃,焙烧时间为3 h. 相似文献
11.
12.
固体超强酸SO_4~(2-)/TiO_2对酯化反应的催化作用 总被引:9,自引:1,他引:9
1979年Hino等首先合成了SO_4~(2-)/TiO_2,SO_4~(2-)/ZrO_2等新型固体超强酸,它们有特殊的催化性能,且具有不怕水,可在高温下使用、制备方便、减少三废等优点,因此有广泛的应用前景,引起国内外催化工作者的兴趣和重视. 我们仿照Hino法合成了SO_4~(2-)/TiO_2体超强酸催化剂,测定了酸强度和比表面.本研究着眼点是取代有严重腐蚀作用的浓H_2SO_4催化剂,选用两类酯化反应考察了SO_4~(2-)/TiO_2的催 相似文献
13.
14.
用XRD技术从定性和定量上对ZrO_2,特别是超强酸催化剂的物相和四方相ZrO_2的含量进行了详细的考察。结果表明,的引入使的晶化温度比ZrO_2大约提高了100K,并且使亚稳态四方相ZrO_2得以稳定。亚稳态四方相ZrO_2的含量主要受处理液浓度和焙烧温度的影响。处理液浓度越大,四方相含量越高;焙烧温度越高;四方相含量越低。强酸性的H_2SO_4溶液比弱酸性的(NH_4)_2SO_4溶液对四方相的生成更有利。在无定形ZrO_2、四方相ZrO_2和单斜相ZrO_2上的稳定性依次减小。 相似文献
15.
16.
已报导,经适当处理的SO42-ZrO2和WO3-ZrO2具有超强酸性[1].在此基础上将SO42-和WO3同时负载于ZrO2表面,发现其表面酸性有明显增强,得到的固体超强酸504-W0s-Zro。在很宽的焙烧温度范围内(700七00“C)都具有HO三一16.04的酸强度,吸附毗院的红外光谱研究表明,其表面同时具有强的L酸性和B酸性问,140“C时,对正乙烷裂解及异构化的催化活性比SO4--ZrO。和WO3-ZI02都高,表现出相当的协同效应同.本文用XRD,DTA-TG,比表面测定等技术研究催化剂的组成、结构形态及其随焙烧温度的变化.并与504-Zro:和WO。… 相似文献
17.
报道了使用固体超强酸催化剂SO24/TiO2对萘进行的齐聚反应。考察了不同制备条件如焙烧温度、硫酸浓度与催化活性之间的关系,同时研究了反应因素对收率的影响。实验表明,当硫酸浓度为0.5mol/L、焙烧温度在450~500℃之间,催化剂的反应活性最高;延长反应时间、提高反应温度将有利于齐聚反应的进行;改变催化剂剂量也会影响齐聚反应。此外采用质谱分析方法对萘齐聚产物进行了分析,结果表明萘在SO24/TiO2的作用下生成的齐聚产物以二聚体为主,其分子量分布主要集中在二聚体到四聚体之间。 相似文献
18.
合成了 SO2 - 4/ Sn O2 固体超强酸催化剂。采用 FT-IR、TG-DSC和 XRD技术研究了 SO2 - 4/ Sn O2 的结构 ,其测试结果表明 :SO2 - 4/ Sn O2 的结构与其催化活性存在很好的一致性。 相似文献
19.
20.
Rare-earth compound solid superacid SO42-/TiO2/La3+ was prepared. Its catalytic activity was examined under different synthetic conditions for the esterification of propanoic acid and n-butyl alcohol as probing reaction. The optimum conditions were also found, which were the pH=8, the depositing time was 24 h, the mass fraction of La(NO3)3 used in solid superacid was 5%, the concentration of H2SO4 was 1.25 mol/L, the soaking time in H2SO4 was 16 h and the calcining temperature was 500 °C. The ethyl oleate was synthesized from oleic acid and ethanol in the presence of SO42-/TiO2/La3+. The optimum reaction conditions were obtained which were the reaction time was 6 h, molar ratio of oleic acid to ethanol was 1:4 and the mass fraction of catalyst was 4%. 相似文献