首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The application of whole cell analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has emerged as a valuable tool for rapidly identifying/detecting bacteria. This technique requires minimal sample preparation and is simple to perform, but is generally limited to purified samples of bacteria at concentrations greater than 1.0 x 10(6) cells/mL. In this paper, we describe a bacterial detection method that integrates immunomagnetic separation with bacteriophage amplification prior to MALDI-MS analysis. The developed method consists of three main stages: (1) isolation of a target bacterium by immunomagnetic separation; (2) infection of the immuno-captured bacterium with a lytic bacteriophage; and (3) assay of infected medium for bacteriophage progeny using MALDI-MS to produce a molecular weight signal for the virus capsid protein. With this technique, the presence of Escherichia coli in broth was determined in less then 2 h total analysis time at a concentration of approximately 5.0 x 10(4) cells/mL.  相似文献   

2.
As a response to environmental stress, bacterial cells can enter a physiological state called viable but noncultivable (VBNC). In this state, bacteria fail to grow on routine bacteriological media. Consequently, standard methods of contamination detection based on bacteria cultivation fail. Although they are not growing, the cells are still alive and are able to reactivate their metabolism. The VBNC state and low bacterial densities are big challenges for cultivation-based pathogen detection in drinking water and the food industry, for example. In this context, a new molecular-biological separation method for bacteria using point-mutated lysozymes immobilised on magnetic beads for separating bacteria is described. The immobilised mutated lysozymes on magnetic beads serve as bait for the specific capture of bacteria from complex matrices or water due to their remaining affinity for bacterial cell wall components. Beads with bacteria can be separated using magnetic racks. To avoid bacterial cell lysis by the lysozymes, the protein was mutated at amino acid position 35, leading to the exchange of the catalytic glutamate for alanine (LysE35A) and glutamine (LysE35Q). As proved by turbidity assay with reference bacteria, the muramidase activity was knocked out. The mutated constructs were expressed by the yeast Pichia pastoris and secreted into expression medium. Protein enrichment and purification were carried out by SO3-functionalised nanoscale cationic exchanger particles. For a proof of principle, the proteins were biotinylated and immobilised on streptavidin-functionalised, fluorescence dye-labelled magnetic beads. These constructs were used for the successful capture of Syto9-marked Microccocus luteus cells from cell suspension, as visualised by fluorescence microscopy, which confirmed the success of the strategy.  相似文献   

3.
This paper describes a method--using a combination of LC-MS/MS of selected bacteria-specific peptides and database search--for determining the species of bacteria present in a mixture. We identified the proteotypic peptides that were associated with specific bacteria by searching protein databases for the LC-MS/MS data. The retention time windows for specific peptide markers were used as an extra constraint so that the peptide markers of many bacterial species could be analyzed in a single LC-selective proteotypic-peptide analysis (SPA). We performed LC-MS/MS analyses on the proteolytic digest of cell extracts and monitored only the selected marker peptide ions at given elution time windows. The corresponding bacterial species could be characterized when the selected peptides that eluted at expected elution windows were identified correctly from the database. We managed to identify up to eight bacterial species simultaneously during a single LC-MS/MS analysis, as well as bacteria mixed in various abundances. Two marker ions having similar values of m/z, but obtained from two different bacterial samples, which would otherwise be selected as precursors within mass tolerance and would complicate the MS/MS data, were time-resolved using LC and then used to correctly identify their bacterial sources. The coupling of selective MS/MS monitoring with separation methods, such as LC, provides a highly selective and accurate analytical method for characterizing complex mixtures of bacterial species.  相似文献   

4.
Jingmin Qiu  Hui Chen 《Talanta》2009,79(3):787-515
This paper describes an immunomagnetic separation of target bacterial cells from others by using magnetic bead. The surface of bead was coated with antibodies which can capture specific organism. The binding efficiency of immunomagnetic bead (IMB) capturing target bacterial cells was higher than 98% when the concentrations of target and interferent bacterial cells were at the same level. The concentration of bacteria was determined indirectly by detecting adenosine 5′-triphosphate (ATP) employing bioluminescence (BL) reaction of firefly luciferin-ATP. Benzalkonium chloride (BAC) was used as an ATP extractant from living bacterial cells. We found that BAC could enhance the light emission when the concentration of BAC was less than 5.3 × 10−2% (w/v) and the BL intensity reached its maximum at the concentration of BAC was 2.7 × 10−2%, which was 10-fold stronger than that without BAC. Based on the principle of the IMB, a microfluidic chip combined with immunofluorescence assay for separating and detecting bacteria simultaneously was also developed. The IMBs were magnetically fixed in the bead-beds of chip channels with a 3-mm diameter of NdFeB permanent magnet. The target bacterial cells can be captured magnetically and observed by a fluorescent microscope.  相似文献   

5.
In this work, we successfully developed bacterial templates on the surface of an overoxidized polypyrrole film using both gram-negative and gram-positive bacteria in which bacterial surface chemical structures are precisely transferred at a molecular level. The sensor film identified target bacteria within minutes through a unique combination with dielectrophoresis. The bacterial cavities had high selectivity for distinguishing specific target bacteria in bacterial mixtures containing gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Bacillus subtilis and Staphylococcus aureus) bacteria. This rapid and specific recognition system will enable not only bacterial sensing but also analysis of various biological species.  相似文献   

6.
负载高密度乙肝检测探针磁珠的制备及性能   总被引:1,自引:0,他引:1  
本文介绍了一种负载高密度乙肝检测探针磁珠的制备技术,并对其在乙肝检测中的应用性能进行了研究,开辟了一种乙肝检测的新方法。首先通过化学键连接的方法制备出表面偶联乙肝抗体的磁性复合微球(亦称“乙肝抗原检测免疫磁珠”),之后将其用于乙肝检测研究表现出了较好的效果,为了进一步提高其检测准确性及灵敏性,对乙肝免疫磁珠的制备过程进行了优化,包括磁珠的胺化工艺及抗体的偶联工艺。通过优化得到氨基磁性复合微球的氨基含量为2.71 mmol/g、单位磁珠抗体偶联量为108.36 ug/mg、偶联效率为77.40%的负载高密度乙肝检测探针的磁珠。并在此过程中采用类“双抗原夹心酶联免疫法”对乙肝抗体的活性及优化效果进行了检测。通过性能检测比较,磁珠法检测灵敏度高于普通酶联免疫法。  相似文献   

7.
Glycosphingolipids (GSLs) play key roles in the manifestation of infectious diseases as attachment sites for pathogens. The thin‐layer chromatography (TLC) overlay assay represents one of the most powerful approaches for the detection of GSL receptors of microorganisms. Here we report on the direct structural characterization of microbial GSL receptors by employment of the TLC overlay assay combined with infrared matrix‐assisted laser desorption/ionization orthogonal time‐of‐flight mass spectrometry (IR‐MALDI‐o‐TOF‐MS). The procedure includes TLC separation of GSL mixtures, overlay of the chromatogram with GSL‐specific bacteria, detection of bound microbes with primary antibodies against bacterial surface proteins and appropriate alkaline phosphatase labeled secondary antibodies, and in situ MS analysis of bacteria‐specific GSL receptors. The combined method works on microgram scale of GSL mixtures and is advantageous in that it omits laborious and time‐consuming GSL extraction from the silica gel layer. This technique was successfully applied to the compositional analysis of globo‐series neutral GSLs recognized by P‐fimbriated Escherichia coli bacteria, which were used as model microorganisms for infection of the human urinary tract. Thus, direct TLC/IR‐MALDI‐o‐TOF‐MS adds a novel facet to this fast and sensitive method offering a wide range of applications for the investigation of carbohydrate‐specific pathogens involved in human infectious diseases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Human procalcitonin is an early diagnostic biomarker for sepsis and bacterial infections and can be used in distinguishing bacterial infections from viral infections. In this study, a colorimetric sensing platform for the rapid determination of procalcitonin was developed. The approach involves the capture of procalcitonin by immunomagnetic beads, and a detection antibody labeled with horseradish peroxidase to perform sandwich format, where it catalyzes the oxidation of 3,3′,5,5′–tetramethylbenzidine to produce the colorimetric signal. Under the optimal conditions, a detection limit of 0.04?ng/mL (3σ) was obtained within the calibration range 0.1–10?ng/mL. The proposed method was performed in less than 90?min and exhibited good specificity without interferences from other biomarkers including C-reactive protein and human serum albumin. Overall, the proposed method provided a new alternative strategy for procalcitonin detection due to its sensitive, rapid, specific, and simple characteristics. This method is suitable for rapid screening of various biomedical targets.  相似文献   

9.
The rapid and specific detection of therapeutically important ligands in complex mixtures, that may bind to membrane proteins, remains challenging for many research laboratories and pharmaceutical industries. Through its use in the development of screening assays, mass spectrometry (MS) is currently experiencing a period of tremendous expansion. In the study presented here, we took advantage of the remarkable stability properties of a bacterial membrane protein, the KcsA K+ channel, produced in E. coli and purified as a tetrameric protein in the presence of a detergent. This membrane protein can subserve as a molecular template to display the pore‐forming region of human K+ channels, which are considered as targets in the search for inhibitory ligands. The engineered chimeric proteins were linked to metal‐bound magnetic beads, for the screening of complex peptide mixtures, such as that of scorpion venoms. The affinity‐captured scorpion toxins were eluted prior to matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS), and to nano‐electrospray ionization tandem mass QqTOF mass spectrometry (MS/MS) analysis. The de novo sequence of the toxins was deduced by combining the MS/MS fragmentation of the reduced form (up to the 33 first residues) and the trypsin digest peptides of the native toxins. This affinity‐capture screening assay led to the isolation and characterization of potent and specific ligands of the human K+ channel, Kv1.3. The affinity‐capture procedure is fast and reproducible. When linked to magnetic beads, the chimeric membrane protein can be re‐used several times without losing any of its selectivity or specificity. This assay also benefits from the fact that it requires minimal amounts of animal venoms or complex mixtures, which can be expensive or difficult to procure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Curie point evaporation and pyrolysis mass spectrometry were applied to the analysis of samples from cultures of Bacteroides gingivalis, an anaerobic microorganism isolated from the dental sulcus of human patients. Gaseous metabolites were sampled on ferromagnetic wires with an absorbent coating of activated carbon. Smears of bacteria and media after growth were analysed on normal ferromagnetic wires. The mass spectra from analyses at the Curie-point temperatures of 358°C and 510°C were examined with a specially adapted factor discriminant analysis program based on ARTHUR. The bacteria were characterized mainly by their volatile fractious. Mass spectra of the media after growth reflected physiological differences between the strains. The absorbent wire technique proved useful for evaluation of gaseous metabolites. Curie-point evaporation and pyrolysis mass spectrometry was found to be especially useful for preliminary screening of samples of organic matter from the various compartments of the bacterial environment.  相似文献   

11.
The separation of aromatic hydrocarbons from aromatic/aliphatic mixtures was investigated with cross- linked polystyrene(CPS) beads modified with sulfonyl groups. Three sulfonating agents, i.e. benzenesulfonyl chlo- ride(BsCl), 4-toluene sulfonyl chloride(TsC1) and methanesulfonyl chloride(MsC1) were used to prepare sulfonyl CPS beads by Friedel-Crafts reaction. The CPS beads modified with BsC1 exhibited higher sulfonation rate than those modified with MsC1 and TsCI and obtained optimum selectivity in the experiments of toluene/n-heptane separation. Further separation tests with various other aromatic/aliphatic mixtures were carried out at an initial aromatic concen- tration of 13%(mass fraction) with the results showing that the modified beads have preferential selectivity for aro- matic hydrocarbons in all aromatic/aliphatic mixtures, and especially a separation factor of 8.21 and a swelling ratio of 30% for toluene/cyclohexane system. The thermal stability and regeneration test indicate that the used polystyrene beads can be recovered through heat-drying and reused effectively.  相似文献   

12.
We aimed to establish an automated versatile sample preconcentration method based on the modified immunomagnetic beads, which was utilized to enrich for aflatoxin B1 from the matrices. The critical main parameters affecting the extraction efficiency, such as usage amount of immunomagnetic beads, reaction time, elution time, and blending way were investigated. Under the optimized conditions, the content of aflatoxin B1 was analyzed by high‐performance liquid chromatography, the mobile phase consists of water–acetonitrile–methanol (42:18:10, v/v/v), and fluorescence detection was performed with excitation and emission wavelengths at 360 and 440 nm, respectively. Moreover, the performance of preconcentration method was compared with the conventional method based on the immunoaffinity column. The accuracy of two clean‐up methods was within the error range. In addition, the stability and recyclability of the immunomagnetic beads was studied by recycling them five times. The results for the respective analysis in various samples demonstrated that the developed extraction platform provides a promising approach that is simple, rapid, sensitive, and easy to use.  相似文献   

13.
A batch separation procedure has been developed for retrieval of tumor necrosis factor (TNF) alpha from the microliter volumes of fluid isolated from the human temporomandibular joint (TMJ). Paramagnetic beads coated with monoclonal antibodies for TNF were used. The beads, and bound TNF, were recovered from solution with the aid of a magnetic field. The amount of bead-bound TNF was quantified using an immuno-based assay developed in this laboratory called the cluster assay. The cluster assay was specific for TNF and linear up to 10 ng. Using these methods we found that TMJ fluid contained 0.2-4.2 ng per 100 microliters of fluid with a mean value of 1.9 ng and a standard deviation of 1.1 ng. This study demonstrates the utility of batch immunomagnetic separation for the concentration and purification of proteins, and the cluster assay for quantification of proteins from microliter volumes of body fluids.  相似文献   

14.
Temperature constrained cascade correlation networks (TCCCNs) are computational neural networks that configure their own architecture, train rapidly, and give reproducible prediction results. TCCCN classification models were built using the Latin-partition method for five classes of pathogenic bacteria. Neural networks are problematic in that the relationships among the inputs (i.e., mass spectra) and the outputs (i.e., the bacterial identities) are not apparent. In this study, neural network models were constructed that successfully classified the targeted bacteria and the classification model was validated using sensitivity and target transformation factor analysis (TTFA). Without validation of the classification model, it is impossible to ascertain whether the bacteria are classified by peaks in the mass spectrum that have no causal relationships with the bacteria, but instead randomly correlate with the bacterial classes. Multiple single output network models did not offer any benefits when compared to single network models that had multiple outputs. A multiple output TCCCN model achieved classification accuracies of 96 +/- 2% and exhibited improved performance over multiple single output TCCCN models. Chemical ionization mass spectra were obtained from in situ thermal hydrolysis methylation of freeze-dried bacteria. Mass spectral peaks that pertain to the neural network classification model of the pathogenic bacterial classes were obtained by sensitivity analysis. A significant number of mass spectral peaks that had high sensitivity corresponded to known biomarkers, which is the first time that the significant peaks used by a neural network model to classify mass spectra have been divulged. Furthermore, TTFA furnishes a useful visual target as to which peaks in the mass spectrum correlate with the bacterial identities.  相似文献   

15.
Ambient ionization mass spectrometry (AIMS) is both labor and time saving and has been proven to be useful for the rapid delineation of trace organic and biological compounds with minimal sample pretreatment. Herein, an analytical platform of probe sampling combined with a thermal desorption–electrospray ionization/mass spectrometry (TD-ESI/MS) and multivariate statistical analysis was developed to rapidly differentiate bacterial species based on the differences in their lipid profiles. For comparison, protein fingerprinting was also performed with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to distinguish these bacterial species. Ten bacterial species, including five Gram-negative and five Gram-positive bacteria, were cultured, and the lipids in the colonies were characterized with TD-ESI/MS. As sample pretreatment was unnecessary, the analysis of the lipids in a bacterial colony growing on a Petri dish was completed within 1 min. The TD-ESI/MS results were further performed by principal component analysis (PCA) and hierarchical cluster analysis (HCA) to assist the classification of the bacteria, and a low relative standard deviation (5.2%) of the total ion current was obtained from repeated analyses of the lipids in a single bacterial colony. The PCA and HCA results indicated that different bacterial species were successfully distinguished by the differences in their lipid profiles as validated by the differences in their protein profiles recorded from the MALDI-TOF analysis. In addition, real-time monitoring of the changes in the specific lipids of a colony with growth time was also achieved with probe sampling and TD-ESI/MS. The developed analytical platform is promising as a useful diagnostic tool by which to rapidly distinguish bacterial species in clinical practice.  相似文献   

16.
Bubble-induced acoustic micromixing   总被引:3,自引:0,他引:3  
A mixing technique based on the principle of bubble-induced acoustic microstreaming was developed. The mixer consists of a piezoelectric disk that is attached to a reaction chamber, which is designed in such a way that a set of air bubbles with desirable size is trapped in the solution. Fluidic experiments showed that air bubbles resting on a solid surface and set into vibration by the sound field generated steady circulatory flows, resulting in global convection flows and thus rapid mixing. The time to fully mix a 22 microL chamber is significantly reduced from hours (for a pure diffusion-based mixing) to tens of seconds. Numerical simulations showed that the induced flowfield and thus degree of mixing strongly depend on bubble positions. Optimal simulated mixing results were obtained for staggered bubble distribution that minimizes the number of internal flow stagnation regions. Immunomagnetic cell capture experiments showed that acoustic microstreaming provided efficient mixing of bacterial cell (Esherichia coli K12) matrix suspended in blood with magnetic capture beads, resulting in highly effective immunomagnetic cell capture. Bacterial viability assay experiments showed that acoustic microstreaming has a relatively low shear strain field since the blood cells and bacteria remained intact after mixing. Acoustic microstreaming has many advantages over most existing chamber micromixing techniques, including simple apparatus, ease of implementation, low power consumption (2 mW), and low cost.  相似文献   

17.
Gao P  Xu G  Shi X  Yuan K  Tian J 《Electrophoresis》2006,27(9):1784-1789
The rapid detection of pathogenic bacteria is extremely important in biotechnology and clinical diagnosis. CE has been utilized in the field of bacterial analysis for many years, but to some extent, simultaneous separation and identification of certain microbes from complex samples by CE coupled with UV detector is still a challenge. In this paper, we propose a new strategy for rapid separation and identification of Staphylococcus aureus (S. aureus) in bacterial mixtures by means of specific mAb-coated latex coupled with CZE. An appropriate set of conditions that selectively isolated S. aureus from the microorganisms Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were established. S. aureus could be differentiated from the others by unique peaks in the electropherograms. The validity was also confirmed by LIF with antibodies specific to both the latex and the microbial cells. The LOD is as low as 9.0 x 10(5) colony forming unit/mL. We have also utilized this technology to identify S. aureus in a stool sample coming from a healthy volunteer spiked successfully with S. aureus. This CZE-UV technique can be applied to rapid diagnosis of enteritis caused by S. aureus or other bacterial control-related fields needing rapid identification of target pathogens from microbial mixtures. In theory, this method is suitable for the detection of any bacterium as long as corresponding bacterium-specific antibody-coated latex is available.  相似文献   

18.
Okadaic acid is a marine biotoxin that primarily occurs in shellfish and can cause diarrheic shellfish poisoning in humans. When analyzing biological samples using liquid chromatography with tandem mass spectrometry, the presence of complex matrices is a major issue. Thus, it is crucial to selectively and simply extract the target analyte from samples and minimize matrix effects simultaneously. To meet this need, an immunomagnetic‐bead‐based liquid chromatography with tandem mass spectrometry method was developed to detect okadaic acid in shellfish. Magnetic beads bound to monoclonal antibody against okadaic acid were used as affinity probes to specifically enrich okadaic acid in samples, which effectively eliminated matrix effects. A magnetic separator was used to aggregate and separate magnetic particles from sample matrices, and methanol was used to elute okadaic acid from the magnetic beads. Standard solution prepared with methanol was employed directly for quantitative analysis. Several experimental conditions were optimized to improve performance. The method is of interest as a rapid (10 min) sample clean‐up and selective enrichment tool, and it showed good linearity and sensitivity, with reported limits of detection and quantitation of 3 and 10 μg/kg, respectively. Fifty‐three shellfish samples from an aquatic products market were tested using this method, and four samples positive for okadaic acid were found.  相似文献   

19.
Hu A  Lo AA  Chen CT  Lin KC  Ho YP 《Electrophoresis》2007,28(9):1387-1392
CE-MS/MS analysis of proteolytic digests of bacterial cell extracts was combined with SEQUEST searching and a new scoring system to identify bacteria species in bacterial mixtures. Searches of MS/MS spectra against protein databases enabled the identification of bacterial species by the matching of the proteins associated with the corresponding species. An empirical scoring function was obtained by evaluating the SEQUEST search results of 38 samples that contained single bacterial species. The scoring by the empirical function helped move up the positive identification results from their original positions in the ranking based on Xcorr values alone. Therefore, the identification of bacteria in the samples that contained bacterial mixtures was improved. Bacterial species in 20 bacterial mixtures, including one real sample, were correctly identified by database searches and the new scoring function.  相似文献   

20.
The molecular composition of mycobacteria and Gram-negative bacteria cell walls is structurally different. In this work, Raman microspectroscopy was applied to discriminate mycobacteria and Gram-negative bacteria by assessing specific characteristic spectral features. Analysis of Raman spectra indicated that mycobacteria and Gram-negative bacteria exhibit different spectral patterns under our experimental conditions due to their different biochemical components. Fourier transform infrared (FTIR) spectroscopy, as a supplementary vibrational spectroscopy, was also applied to analyze the biochemical composition of the representative bacterial strains. As for co-cultured bacterial mixtures, the distribution of individual cell types was obtained by quantitative analysis of Raman and FTIR spectral images and the spectral contribution from each cell type was distinguished by direct classical least squares analysis. Coupled atomic force microscopy (AFM) and Raman microspectroscopy realized simultaneous measurements of topography and spectral images for the same sampled surface. This work demonstrated the feasibility of utilizing a combined Raman microspectroscopy, FTIR, and AFM techniques to effectively characterize spectroscopic fingerprints from bacterial Gram types and mixtures.
Figure
AFM deflection images, Raman spectra, SEM images, and FTIR of Mycobacterium sp. KMS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号