首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of four-coordinate square-planar nickel(II) complexes of o-phenylenebis(N'-methyloxamidate)(L1) and related o-phenylene(N'-methyloxamidate)oxamate (L2) and o-phenylenebis(oxamate)(L3) tetradentate ligands have been synthesized and characterized structurally, spectroscopically and electrochemically. The parent nickel(II)-L1 complex presents an intense MLCT band in the UV region (lambda max = 357 nm) and a distinctive 1 s --> 4p CT satellite in the Ni K-edge XANES spectrum (E = 8339.2 eV). These features together with the short Ni-N(amidate) bond lengths (1.85-1.93 A) as revealed by the analysis of the Ni K-edge EXAFS spectrum and confirmed by single-crystal X-ray diffraction are typical of square-planar low spin (S = 0) Ni(II) ions. The dianionic nickel(II) complexes, [Ni(II)L(i)](2-)(i = -3), experience two redox processes in acetonitrile at 25 degrees C. The first redox process, at moderately low potentials (E1 = 0.12-0.52 V vs. SCE), is a reversible one-electron metal-centered oxidation to the corresponding monoanionic nickel(III) complexes, [Ni(III)L(i)]-. The second redox process, at relatively high potentials (E2 = 0.86-1.04 V vs. SCE), is a quasireversible to irreversible one-electron oxidation largely centered on the o-benzenediamidate fragment of the non-innocent ligand, yielding the corresponding neutral nickel(iii) complexes with a o-benzosemiquinonediimine pi-cation radical ligand, [Ni(III)(L(i))*+]. The singly and doubly oxidized species of the parent nickel(II)-L1 complex have been prepared by chemical oxidation and characterized spectroscopically in acetonitrile at -40 degrees C. The stable singly oxidized nickel(III)-L1 species presents an intense LMCT band in the NIR region (lambda max = 910 nm) and a rhombic X-band EPR spectrum (g1 = 2.193, g2 = 2.080 and g3 = 2.006) characteristic of square-planar low spin (S = 1/2) Ni(III) ions. The unstable double oxidized nickel(III)-L1 pi-cation radical species exhibits a rather intense visible band (lambda max = 645 nm) that is tentatively assigned as a MLCT transition from the Ni(III)-benzosemiquinone type ground state to the Ni(IV) excited state.  相似文献   

2.
The coordination chemistry of a tetradentate redox-active ligand, glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil) (H(2)L), was investigated with the diorganotin(iv) and diphenyllead(iv) moieties. Complexes R(2)SnL (R = Me (), Et (), (t)Bu (), Ph ()) and Ph(2)PbL () have been prepared and characterized. The molecular structures of compounds , and have been determined by single crystal X-ray diffraction. The diamagnetic octahedral complexes bear a tetradentate O,N,N,O redox-active ligand with a nearly planar core. Complexes demonstrate solvatochromism in solution. The CV of complexes reveals four one-electron redox processes. The spin density distribution in the chemically generated cations and anions of was studied by X-band EPR spectroscopy. The experimental data agree well with the results of DFT calculations of electronic structures for , its pyridine adduct ·Py, cation and anion .  相似文献   

3.
The complexes of Cr(III), Mn(II) and Ni(II) were synthesized with macrocyclic ligand i.e. 5,11-dimethyl-6,12-diethyl-dione-1,2,4,7,9,10-hexazacyclododeca -1,4,6,10-tetraene. The ligand (L) was prepared by [2+2] condensation reaction of 2,3-pentanedione and semicarbazide hydrochloride. These complexes were found to have the general composition [Cr(L)X(2)]X and [M(L)X(2)] (where M=Mn(II) and Ni(II); X=Cl(-), NO(3)(-), (1/2)SO(4)(2-), NCS(-) and L=ligand [N(6)]). The ligand and its transition metal complexes were characterized by the elemental analysis, molar conductance, magnetic susceptibility, mass, IR, electronic and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for these complexes except sulphato complexes which are of five coordinated geometry.  相似文献   

4.
Summary Divalent nickel, cobalt and copper salts react with 2,6-diaminopyridine and acetylacetone to form complexes containing a 16-membered N6 tetradentate macrocyclic ligand. The complexes are characterised as distorted octahedra of the M(TML)X2 type where M=nickel(II), cobalt(II) and copper(II); TML=tetradentate macrocyclic ligand and X=Cl, Br, NO3 or NCS. The ligand coordinates through all the four azomethine nitrogen atoms which are bridged by acetylacetone moieties. Pyridine nitrogen does not participate in coordination, a fact supported by far i.r. studies. The magnetic, electronic and i.r. spectral studies indicate that the complexes have lower symmetries and the amounts of distortion calculated in terms of DT/DQ applying normalised spherical harmonic Hamiltonian theory indicate that these complexes are moderately distored.  相似文献   

5.
Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+?) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.  相似文献   

6.
A redox-active, tetradentate ligand, N,N'-bis-(3-dimethylamino-propyl)-4,5-dimethoxy-benzene-1,2-diamide ([N(2)N(2)(cat)](2-)), was developed, and the six-coordinate metal complexes [N(2)N(2)(cat)]TiCl(2) (3) and [N(2)N(2)(cat)]ZrCl(2) (4) were synthesized. The tetradentate ligand was determined to be fluxional in 3 and 4, enabled by reversible dissociation of the neutral amine groups of the [N(2)N(2)(cat)](2-) ligand. Both amine arms of 3 could be replaced by N,N-dimethylaminopyridine with an overall free energy change of -4.64(3) kcal mol(-1) at 298 K. Cyclic voltammetry experiments were used to probe the redox capabilities of the [N(2)N(2)(cat)](2-) ligand: complex 3 exhibited two one-electron oxidations at -0.19 and -0.52 V versus [Cp(2)Fe](+/0) while 4 exhibited a single two-electron oxidation at -0.55 V. Substitution of the chlorides in 3 for an imide afforded the dimer {[N(2)N(2)(cat)]Ti(μ-p-NC(6)H(4)Me)}(2), in which the metal centers are five-coordinate because of dissociation of one amine arm of the [N(2)N(2)(cat)](2-) ligand. While the bis-azide complex [N(2)N(2)(cat)]Ti(N(3))(2) was stable toward elimination of N(2), the bis-phenylacetylide complex [N(2)N(2)(cat)]Ti(C≡CPh)(2) could be oxidized by PhICl(2), resulting in subsequent reductive elimination of 1,4-diphenylbutadiyne.  相似文献   

7.
8.
9.
Three nickel(II) dinuclear carbonato-bridged complexes: (-CO3)[Ni(TAA)]2(ClO4)2·4H2O (1), (-CO3)[Ni(TTA)]2- (ClO4)2·2H2O (2), (-CO3)[Ni(cyclam)]2(ClO4)2 (3) [TAA =N(CH2CH2NH2)3,TTA=triethylenetetramine,cyclam = 1,4,8,11-tetraazacyclotetradecane] have been prepared. The temperature dependence of the magnetic susceptibility for (1), (2) and (3) were measured over the 77–300K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator (H= –2JS1S2), giving the exchange integral J=–7.75cm–1 for (1), J=–1.23 cm–1 for (2) and J=–40.26cm–1 for (3).  相似文献   

10.
The reaction of the ligand N-phenyl-1,2-benzenediamine (N-phenyl-o-phenylenediamine), H2[L(PDI)], in dry acetonitrile with [FeIII(dmf)6](ClO4)3 (dmf = N,N-dimethylformamide) affords the dimer (mu-NH,NH)[FeIII(L(ISQ))(L(PDI))]2 (1), where (L(ISQ))*- represents the pi radical monoanion N-phenyl-o-diiminobenzosemiquinonate and (L(PDI))2- is its one-electron-reduced, closed-shell form. Complex 1 possesses a diamagnetic ground-state St = 0. Addition reactions of tri-n-butylphosphane, tert-butyl isocyanide, cyclohexyl isocyanide, 4,5-diphenylimidazole, and 4-(1-phenylpentyl)pyridine with 1 in acetonitrile or toluene yields [FeII(L(ISQ))2(PBu3)] (2), [Fe(II)(L(ISQ))2(CN-tBu)] (4), [FeII(L(ISQ))2(CNCy)] (5), [FeIII(L(ISQ))2(Ph2Im)] (6), and [FeIII(L(ISQ))(L(PDI))(BuPhCH-py)].BuPhCH-py (7). Oxidation of 1 with iodine affords [FeIII(L(ISQ))2I] (3), and oxidation of 2 with ferrocenium hexafluorophosphate yields [FeIII(L(ISQ))2(PBu3)](PF6) (2ox). The structures of complexes 2, 2ox, 3, 5, 6, and 7 have been determined by X-ray crystallography at 100(2) K. Magnetic susceptibility measurements and EPR, UV-vis, and M?ssbauer spectroscopy have established that mononuclear complexes containing the [FeII(L(ISQ))2X] chromophore (2, 4, 5) are diamagnetic (St = 0) whereas those with an [FeIII(L(ISQ))2X]n chromophore (3, 2(ox), 6) are paramagnetic (St = 1/2) and those with an [FeIII(L(ISQ))(L(PDI))X] chromophore (7) possess an St = 1 ground state. It is established that all ferric species have an intrinsic intermediate spin (SFe = 3/2) which is intramolecularly antiferromagnetically coupled to one or two (L(ISQ))*- ligand radicals yielding an St = 1 (7) or St = 1/2 (2ox, 3, 6) ground state, respectively. In the ferrous complexes 2, 4, and 5 the intrinsic spin at the iron ion is either low spin (SFe = 0) or intermediate spin (SFe = 1). Antiferromagnetic coupling between two radicals (L(ISQ))*- or, alternatively, between the intermediate spin ferrous ion and two radicals yields then the observed diamagnetic ground state. In 1 two [FeIII(L(ISQ))(L(PDI))] halves with S = 1 couple antiferromagnetically affording an St = 0 ground state.  相似文献   

11.
A new pyridylpyrazole-containing tetradentate ligand, namely N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)aminomethylpyridine (L), and two of its binuclear azido-bridged complexes, [Ni2(L)2(N3)2](ClO4)2·2EtOH (1) and [Cu2(L)2(N3)2](ClO4)2 (2), have been synthesized and characterized by physico-chemical and spectroscopic methods. The crystal structures of both complexes are reported. Each metal atom in the complexes has a MN6 coordination environment with distorted octahedral geometry. Variable-temperature magnetic susceptibility measurements for complex (1) show typical antiferromagnetic behavior with J value −84.5 ± 1.3 cm−1, whereas complex (2) has no magnetic interactions.  相似文献   

12.
The nickel and zinc complexes of 2-aminomethylaniline (AMA) are reported. Both metals form the octahedral complex [M(AMA)2(ONO2)2] (M = Ni, Zn) where the aromatic ligands lie in the meridial plane with the anilino donors trans to one another. The remaining nitrates coordinate axially. A simple comparison with the nitrogen donor disposition (cis/trans) in nickel complexes of tetradentate N4 donor ligands derived from symmetric Schiff base ligands is presented. The discussion is extended to interrogate the bonding motifs of the nitrate ligands viz –ONO2 in the nickel complexes of AMA compared to the two motifs (viz O2NO and ONO2) that are isolated for the nickel complexes of the macrocycle hexamethyltetraazacyclotetradecane.  相似文献   

13.
14.
Summary Nickel(II) complexes of a redox-active tetradentate Schiff base ligand with ethylene/propylene linkages have been prepared and characterized by spectroscopic and magnetic studies. The complexes are diamagnetic in the solid state and exhibit paramagnetic behaviour in solution. Reflectance spectra of the samples indicate a shift of the main d-d band envelope to lower energies as the bridge is changed from ethylene to propylene.Author to whom all correspondence should be directed.  相似文献   

15.
The focus of this report is the synthesis and properties of two new analogues of ruthenium(ii) tris-bipyridine, a monomer and dimer. The complexes contain the ligand 6,6'-(ethan-1,2-diyl)bis-2,2'-bipyridine (O-bpy) which contains two bipyridine units bridged in the 6,6' positions by an ethylene bridge. Crystal structures of the two complexes formulated as [Ru(bpy)(O-bpy)](PF6)2 and [(Ru(bpy)2)2(O-bpy)](PF6)4 reveal structures of lower symmetry than D3 which affects the electronic properties of the complexes as substantiated by density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. The HOMO lies largely on the ruthenium center; the LUMO spreads its electron density over the bipyridine units, but not equally in the mixed O-bpy-bpy complexes. Calculated Vis/UV spectra using TDDFT methods agree with experimental spectra. The lowest lying triplet excited state for [Ru(bpy)(O-bpy)](PF6)2 is 3MC resulting in a low emission quantum yield and a large chloride ion photosubstitution quantum yield.  相似文献   

16.
Three new mononuclear Schiff-base complexes, namely [Mn(L)Cl] (1), [Ni(L)] (2), and [Cu(L)] (3), where L?=?anion of [N,N′-bis(2-hydroxybenzophenylidene)]propane-1,2-diamine, have been synthesized by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base, H2L, in methanol. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 adopts a distorted square-pyramidal geometry whereas 2 and 3 are isotypic with distorted square-planar geometries. The antibacterial activities of 13 along with their Schiff base have been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

17.
18.
Complexes of Cr(III), Co(II), Ni(II) and Cu(II) containing a novel macrocyclic tetradentate nitrogen donor (N4) ligand prepared via reaction of 2,3-hexanedione and ethylenediamine has been prepared and characterized. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analysis, molar conductance, magnetic moment susceptibility, EI-Mass, IR, Electronic and EPR spectral studies. The complexes are of high-spin type and four coordinated tetrahedral, five coordinated square pyramidal and six coordinated octahedral/tetragonal geometries. The ligand (L) and its soluble transition metal complexes have also been screened against different bacteria and plant pathogenic fungi in vitro.  相似文献   

19.
The mixed gallium transition-metal complexes [FeCl[Ga(2)((t)Bu)(4)(neol)(2)]] (1) and [M[Ga(2)((t)Bu)(4)(neol)(2)]], M = Co (2), Ni (3), Cu (4), have been prepared by the reaction of [Ga(2)((t)Bu)(4)(neol-H)(2)] (neol-H(2) = 2,2-dimethyl-propane-1,3-diol) with the appropriate metal halide and Proton Sponge. Compounds 1-4 have been characterized by NMR (3), UV/vis, and IR spectroscopy and magnetic susceptibility (solution and solid state), and their molecular structures have been confirmed by X-ray crystallography. The molecular structure of compounds 1-4 consists of a tetracyclic core formed from two four-membered and two six-membered rings. The central metal atom adopts a square pyramidal (1) or square planar (2-4) geometry. The magnetic susceptibilities for 1, 2, and 4 are as expected for strong ligand field environments. On the basis of spectroscopic and structural data, the [Ga(2)((t)Bu)(4)(neol)(2)](2-) ligand appears to be more flexible than other chelating ligands; this is proposed to be due to the flexibility in the O-Ga-O bond angle.  相似文献   

20.
The reactions of RCo(BDM1,3pn)(H2O) with light, heat, acids, electrophiles and nucleophiles were studied. (HBDM1,3pn is a mononegative, tetradentate dioxime-diimine ligand formed by condensing 2,3-butanedionemonoxime with 1,3-propanediamine in a 2/1 molar ratio; R = CH3, C2H5, n-C3H7, n-C4H9, and C6H3CH2-) Pyrolysis and photolysis of the alkyl complexes result in a cobalt(II) complex (anaerobic conditions) along with alkenes and alkanes. The major organic products from solid state pyrolysis at 200°C or photolysis in water are CH4 (R = CH3), C2H4 (R = C2H5), C3H6 (R = n-C3H7), C4H8 (R = n-C4H9) and (C6H5CH2)2 (R = C6H5CH2). No alkyl—cobalt bond cleavage occurs with acids or bases in most cases. Two exceptions are the reactions with 3 M HNO3 at 25°C and with 1 M NaOH at 52°C. Electrophiles like I2 cleave the alkyl—cobalt bond forming RI and CoIII (BDM1,3pn)I2. Nucleophilic reagents (N-) displace the H2O trans to the alkyl group to form RCo(BDM1,3pn)(N), but do not dealkylate the alkyl complex under the reaction conditions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号