首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, the variational method is employed for minimizing the gain ripple of multi-wavelength fiber Raman amplifiers. The variance of gain spectrum of the fiber Raman amplifier is regarded as the cost function, restriction on total pump power and average gain is given as the constraints of the minimization problem. It is shown that the minimization problem with any necessary constraints on the pump powers, average gain and signal to noise ratio, is reduced to a two-point boundary value problem. The method gives the entire possible local and global solutions. The method is applied to different examples of fiber Raman amplifiers with different lengths from 25 km to 100 km and different numbers of pumps from 4 to 20 to determine the pump powers and wavelengths for minimum gain ripple. It was obtained for a 100 km fiber Raman amplifier the gain ripple can be about 0.1 dB with on-off gain more than 20 dB.  相似文献   

2.
In this paper, we have solved propagation equations of multi-pump fiber Raman amplifier using Runge–Kutta (RK 4th order) numerical method and pump power evolutions along with the fiber length. They are used to calculate the net gain and gain ripple by varying the input signals powers for different fiber lengths. The pump powers are optimized by genetic algorithm and resulting net gain and gain ripple are reported graphically as well as in tabular form. The optimum minimum gain ripple is 0.26 dB for 1 mW input signal powers for 50 km fiber length. By increasing the fiber length gain ripple increases to 0.5 dB for 0.1 mW input signal power. In comparison to other methods reported in the literature, our method is simple to implement and efficient for numerical design of Raman amplification in optical communication systems.  相似文献   

3.
An initial value determination method with a contraction factor for the counter-pumped Raman coupled equations is proposed. This method is used in conjunction with initial guess correction mechanism of Newton's method to construct a new efficient shooting algorithm for the solution of counter-pumped Raman coupled equations. The particle'swarm optimization is used to find the optimal wavelengths and powers for the pumps. By combining the new shooting algorithm and particle swarm optimization a powerful approach to the design of gain spectra for Raman fiber amplifiers is developed. Using this approach a counter-pumped broadband Raman fiber amplifier in C + L-band is designed and optimized. An average on-off gain of 9.3 dB for a bandwidth of 95 nm is obtained using only 4 pumps, with an in-band ripple level of ± 0.7 dB.  相似文献   

4.
Based on dual-order stimulated Raman scattering (SRS) of a single 1395 nm Raman fiber laser in 75 km single mode fiber and its corresponding dispersion compensation module, a hybrid Raman/Erbium doped fiber amplifier (EDFA) for long wavelength band (L-band) amplification is realized by inserting a segment of EDF within the span. By comparing the performance of gain and noise in four hybrid amplifiers with different span configurations, we find that the distribution of the secondary L-band amplification obtained from the EDF along the link has a great influence on the performance of the hybrid amplifier. Both gain and noise performance of hybrid amplifier can be improved significantly by optimizing the location of the EDF. Moreover, we can extend the flat gain bandwidth from L-band to central wavelength band (C-band) plus L-band by recycling the residual first-order SRS to pump a segment of EDF with proper length.  相似文献   

5.
In this work, the modified particle swarm optimization is used as an optimization tool to determine the set of wavelengths and power levels of pumps that delivers a flat gain spectrum for Raman fiber amplifiers. The average power analysis technique is used as a numerical method to solve the coupled Raman amplifier equations. By combining the modified particle swarm optimization and average power analysis technique an efficient algorithm for the design of flat-gain-spectrum broadband Raman fiber amplifiers is constructed. Application of this algorithm to the design of flat-gain-spectrum broadband Raman fiber amplifiers shows that the design efficiency of the new method is improved by 1-2 orders of magnitude compared with similar implementations previously reported in the literature. A 4-backward-pump gain-flattened Raman amplifier with bandwidth of 100-nm and maximum gain ripple of <1.0 dB is designed to demonstrate the technique.  相似文献   

6.
In this work, a novel metaheuristic named artificial fish school algorithm is introduced into the optimization of pump parameters for the design of gain flattened Raman fiber amplifiers for the first time. Artificial fish school algorithm emulates three simple social behaviors of a fish in a school, namely, preying, swarming and following, to optimize a target function. In this algorithm the pump wavelengths and power levels are mapped respectively to the state of a fish in a school, and the gain of a Raman fiber amplifier is mapped to the concentration of a food source for the fish school to search. Application of this algorithm to the design of a C-band gain flattened Raman fiber amplifier leads to an optimized amplifier that produces a flat gain spectrum with 0.63 dB in band ripple for given conditions. This result demonstrates that the artificial fish school algorithm is efficient for the optimization of pump parameters of gain flattened Raman fiber amplifiers.  相似文献   

7.
An effective feedback algorithm is proposed to dynamically control the gain spectra of multi-wavelength pumped broadband Raman amplifiers. Based on Raman coupling power equations, a simple saturation factor is introduced to achieve the adjusting matrix. By using this method, efficient pump adjustment can be carried out to accomplish wide-range dynamic gain spectrum control (larger than 22 dB dynamic range) as well as automatic gain clamping even for 90 nm bandwidth, highly-saturated RAs. Moreover, this algorithm can be well applied to different fiber types as well as pumping schemes. Some useful guidelines are also demonstrated.  相似文献   

8.
Automatic gain control method in Raman amplifier with multi-wavelength pumping scheme is presented. Monitoring of several channel power and feedback pump control is used in the gain control method. The condition to minimize the gain deviation is investigated by numerical simulation. Two monitoring channels are necessary to confine gain deviation in ±0.2 dB at two pumps C-band Raman amplifier. In the experiment, gain deviation of 1.5 dB is controlled to 0.2 dB at 38/40 channels drop, and fast suppression of transient gain excursion is achieved.  相似文献   

9.
A gain and gain-flatness improved L-band dual-pass Raman fiber amplifier (RFA) utilizing a photonic crystal fiber (PCF) as gain medium is demonstrated. By introducing complementary gain spectra of typical forward and backward pumping single-pass RFA using the same PCF, we finally achieve average net gain level of 22.5 dB with a ±0.8 dB flattening gain in 20-nm bandwidth from 1595 nm to 1615 nm, which is rare in RFAs with only one single pump and no flattening filter. Compared with the single-pass pump configurations, gain level, flatness and bandwidth are greatly improved by using the dual-pass amplification configuration. The limitation of this configuration caused by multi-path interference (MPI) noise and stimulated Brillouin scattering (SBS) is also discussed.  相似文献   

10.
巩稼民  赵云  冷斌 《应用光学》2014,35(2):353-358
针对光纤通信中密集波分复用系统各信道的在线平坦光放大这一光通信问题,提出利用级联高非线性光纤来设计增益平坦的拉曼光纤放大器。对高非线性光纤(As S光纤)拉曼增益谱前后沿进行线性拟合处理,利用不同波长泵浦抽运同种光纤,实现前放大后增益补偿,并考虑信号光损耗不同,在输出端得到了一个近似固定的功率输出值,并分析了影响拉曼光纤放大器输出特性的因素。模拟结果表明:平均增益为20.45 dB,增益平坦度为0.15 dB。  相似文献   

11.
In this paper, two stage hybrid optical amplifier (HOA) composed of a single erbium doped fiber amplifier and Raman amplifier is proposed for dense wavelength division multiplexed (DWDM) system and investigate the impact of reduced channel spacing. The performance has been evaluated in the term of gain, gain flatness and noise figure. Also, using gain equalization technique, hybrid optical amplifier that has a gain flatness of 3 dB, and a noise figure of less than 7.4 dB is observed.  相似文献   

12.
This paper proposes a novel bi-directional hybrid fiber amplifier using a single-wavelength pump laser diode (LD) at 1495 nm. The hybrid amplifier is theoretically applied in a 50 km bi-directional local area network (LAN) with 26 ch × 10 Gb/s for bi-directional transmission. Thirteen C-band channels serve as downlink signals while the other 13 L-band channels are employed as uplink signals. Without loss of generality, four channels (two from each band) are experimentally analyzed. Erbium doped fiber (EDF) provides amplification for the C-band channels and Raman amplification amplifies the L-band channels. The pump efficiency is improved by employing a double-pass scheme for both the Erbium doped fiber amplifier (EDFA) and Raman fiber amplifier (RFA). The chromatic dispersion incurred by all the channels is precisely compensated for by inserting a fiber Bragg grating (FBG) array in appropriate locations along the dispersion compensating fiber (DCF) segments. Moreover, gain equalization of all the channels is achieved by adjusting the FBG reflectivity. Both the simulation results and experimental measurements confirm the proposed device feasibility and potential application in a bi-directional LAN.  相似文献   

13.
研究了拉曼放大器中放大的自发拉曼散射对拉曼开-关增益的影响,并提出了一种利用自发拉曼散射谱来调整拉曼放大器位曼开-关增益平坦的方法,实验采用4个波长为14xx nm的激光二极管作为抽运源,75km的G.652光纤作为传输介质,获得了C波段附近的光放大,同时对此给出了合理的理论解释。  相似文献   

14.
为解决传统拉曼放大器增益系数低和增益不平坦的问题,采用级联光子晶体光纤的设计方法设计了一种增益平坦的拉曼光纤放大器.采用受激拉曼散射效应的稳态分析理论,分析了光子晶体光纤的拉曼增益谱,建立了拉曼放大器的理论模型.通过解耦合方程,推导了实现增益平坦的约束条件,发现光纤长度和泵浦功率是影响拉曼光纤放大器增益平坦度的两个参数.仿真结果表明,在1 508~1 544 nm的带宽范围内,实现了一个增益高达21 dB,增益平坦度仅为0.14 dB的光子晶体拉曼光纤放大器,可在光纤通信系统应用中发挥重要作用.  相似文献   

15.
The characteristics of hybrid fiber amplifier (HFA) are investigated. HFA is composed of three stages: short-length EDFA pre-stage, DCF Raman amplifier, and power boosting EDFA. HFA has low noise figure, high output power, and also wide input power dynamic range. Gain control method of HFA is presented experimentally, and the transient gain excursion is suppressed to less than 0.5 dB at 3 dB channel add-drop. HFA can be used as line amplifier in optical transmission link even combined with distributed Raman amplifier due to wide input power dynamic range. The transmission performance of HFA is better than EDFA by more than 1.0 dB of Q-factor in 720 km SMF transmission.  相似文献   

16.
1410 nm波段分布式光纤拉曼增益放大器的研究   总被引:6,自引:2,他引:4  
讨论了分布式光纤拉曼增益放大器的工作原理,采用1320nm固体激光器作为抽运源,获得了1410nm波段附近的光放大,在单模GI光纤长度为23km时,初步研究了拉曼放大器增益与光纤作用长度的关系,抽运脉冲峰值功率分别为50W、30W时,光纤的有效作用长度分别为15.5km和10.5km;研究了在不同的光纤有效作用长度时,拉曼放大器增益与抽运功率的关系;从光纤拉曼光谱图估算了光纤拉曼放大器的光谱宽度为50nm或250cm^-1。  相似文献   

17.
A side coupled integrated spaced sequence (SCISSOR) of Silicon or Chalcogenide glass microrings of different diameter are considered as a wide-band Raman amplifier. Because the two-photon absorption (TPA) losses in Chalcogenide glass are less than that of Silicon, it is shown that Chalcogenide microrings are suitable for wide-band Raman amplifier in the telecommunication bandwidth (1.5 μm). The Lagrange unknown multiplier method is employed to minimize the gain ripple of the amplifier versus the pump and system parameters.  相似文献   

18.
Jian-guo Yuan  Tian-yu Liang  Wang Wang  Sheng Gu 《Optik》2011,122(17):1565-1568
The configuration of the hybrid amplifier (Raman Amplifier: RA + Erbium-Doped Fiber Amplifiers: EDFA) has been introduced and the restriction conditions of its optimum design have also been analyzed and discussed, and then the ASE noise and Rayleigh noise in Raman Amplifier (RA) as well as their influences on the Signal Noise Ratio (SNR) of the receiver have been analyzed in depth. Furthermore, the influences, which result from these noises, on the performances of the optimum design for the hybrid amplifier (RA + EDFA) have thoroughly been researched. Finally, some significant conclusions to play an important role in guiding the optimum design of the hybrid amplifier have been obtained by the above analyses and researches.  相似文献   

19.
Phased matched wavelength, effective area, effective Raman gain, and wave guide dispersion are computed from exact numerical solution assuming scalar wave equation in the presence and absence of ripples as imperfections in the refractive index profile in dual cores of single mode fiber Raman amplifier for the first time. It is observed that for larger values of amplitude and lower frequencies, the effective Raman gain increases w.r.t. that calculated with no ripples. However, we assume ripple amplitude up to 5% of core cladding refractive index difference w.r.t. the available data, corresponding to the three ranges of relative ripple amplitudes of 1%, 2%, 3% and ripple frequencies of 1, 2, 3 μm−1. Based on these data, we analyse performance of FRA over frequency shift band of 20–700 cm−1. Uniformity of gain is interestingly seen to be maintained for higher ripple frequency and lower amplitude. However, no prominent effect in coefficient of dispersion and phase matched wavelength is observed within operating range of wavelength. Also, based on available structural parameter, the investigation should find use as a guide to system users to know the limit and promise of existence of ripples.  相似文献   

20.
We propose double pass fiber Raman amplifier schemes based on Raman fiber oscillator in order to amplify optical signal with wavelengths from 1610 to 1650 nm efficiently. We experimentally demonstrate that the proposed double pass amplifier scheme has enhanced gain characteristics compared to a conventional single pass scheme. We also demonstrate a scheme for the proposed double pass amplifier to have small gain variation over the wavelength range by using two fiber Bragg gratings with different center wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号