首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, temporal evolution of two-photon laser optogalvanic signals of neon has been studied. Optogalvanic signals for four transitions from the metastable 2p53s[3/2]2 state to 2p54d′[3/2]1, 2p54d′[3/2]2, 2p54d′[5/2]3 and 2p54d′[5/2]2 states were recorded over a range of discharge currents (3.4–9 mA). It was found that the shape of the optogalvanic signal was strongly dependent on the discharge current so that its peak shifted to shorter times and its amplitude increased with the discharge current. The decay rates of the 4d states, calculated from the optogalvanic signals, were found to increase linearly with the discharge current in the range of 6.2–9 mA. However, for the range of 3.4–5.4 mA, the decay rates were observed to slightly decrease with the discharge current.  相似文献   

2.
R C Sharma  T Kundu  S N Thakur 《Pramana》1998,50(5):419-432
Two-photon optogalvanic transitions in Ar glow discharge with Nd: YAG laser pumped dye laser excitation in the frequency range 13520–16520 cm−1 has been studied using linear and circular polarization. The intensities of two-photon optogalvanic transitions are very sensitive to changes in the incident laser power which is not the case with one-photon transitions. Intensity ratio for circular and linear polarized light for two photon transitions 6s′[1/2]°1←4s[3/2]°2, 6s′[1/2]°0←4s[3/2]°2, and 5d[1/2]°0←4s[3/2]°2, 5d[1/2]°1←4s[3/2]°2 are quite different from the other two-photon transitions. This has been explained as due to near one photon resonance of 4p′[3/2]1 level for the first pair and 4p′[1/2]1 for the second pair of transitions. The ratio of optogalvanic intensity for circular to linear polarized light has been theoretically estimated and compared with the observed results.  相似文献   

3.
By the use of two step excitation from the (2p5 3s)1P1 state of neon very large enhancements of the optogalvanic signals were obtained. This proves that no inverted population between the levels 2p1,2,3,4,5 and 1P1 occurs as it was proposed in a recent paper. A new explanation of the inverted optogalvanic signals obtained for transitions originating from this 1P1 state is proposed.  相似文献   

4.
In the present work emission and absorption spectroscopy have been used to determine the plasma parameters of neon in a hollow cathode discharge lamp. The excitation temperature is determined using the intensity ratio method and Boltzmann's plot method whereas the electron density is determined from the Stark broadening of the spectral lines. The behavior of the optogalvanic signal as a function of laser energy has been studied for three transitions from the 2p53s [1/2]2 metastable state following ΔJK=0, ±1 dipole selection rules. The saturation technique has been used to measure the photoionization cross section from three intermediate states 2p53p′ [1/2]1, 2p53p′ [3/2]2 and 2p53p [5/2]3 up to the 2p5 2P1/2 ionization threshold.  相似文献   

5.
New optogalvanic (OG) Rydberg-Rydberg transitions of neon have been observed in the near-infrared region (830-870 nm), using a commercial Fe-Ne hollow cathode. They involve transitions from the 3d[3/2] J=1 and 3d[7/2] J=3,4 levels to high-lying nf levels. In addition, other OG transitions, observed in the blue range, have been completely assigned to ns, nd, ns′ and nd′ Rydberg series excited from the 3p[1/2] J=1 and 3p[5/2] J=2,3 levels of neon. These transitions and assignments allowed us to extend the range of tunable laser calibration on the two edges of the visible range, where there is a lack of available calibration lines, i.e. the near-infrared and the far-blue range, with a 0.01 nm absolute accuracy.  相似文献   

6.
Integral yields of spontaneous emission at wavelengths of 1.73, 2.03, and 2.65 μm have been measured upon excitation of pure xenon by a pulsed electron beam. These yields have been analyzed and experimental data have been obtained on time constants of radiative transitions 5d[3/2]1 → 6p[5/2]2, 5d[3/2]1 → 6p[3/2]1, and 5d[3/2]1 → 6p[1/2]0 of XeI, which appeared to be equal to (2300 ± 400) × 10?9, (300 ± 40) × 10?9, and (1300 ± 200) × 10?9 s, respectively. It is shown that the experimental data are in a qualitative agreement with the results of computational and theoretical investigations. The results of averaging the experimental and calculated data are proposed for use as recommended values of the corresponding constants.  相似文献   

7.
We report the observation of pronounced coherent population trapping and dark resonances in Rydberg states of xenon. A weak two-photon coupling with radiation of = 250 nm is induced between the 5p6 1 S 0 ground state of xenon and state 5p 56p[1/2]0, leading to (2+1) resonantly enhanced three-photon ionization. The state 5p 56p[1/2]0 is strongly coupled by radiation with ≃ 600 nm to 5p 5 ns[J C]1 or 5p 5 nd[J C]1 Rydberg states with principal quantum numbers n in the range 18 ?n? 23 and with the rotational quantum number of the ionic core J C = 1/2 or J C = 3/2. The ionization is monitored through observation of the photoelectrons with an energy resolution ΔE = 150 meV which is sufficient to distinguish the ionization processes into the two ionization continua. Pronounced and robust dark resonances are observed in the ionization rate whenever is tuned to resonance with one of the ns- or nd-Rydberg states. The dark resonances are due to efficient population trapping in the atomic ground state 5p6 1 S 0 through the suppression of excitation of the intermediate state 5p 56p[1/2]0. The resolution is sufficient to resolve the hyperfine structure of the ns-Rydberg levels for odd xenon isotopes. The hyperfine splitting does not vary significantly with n in the given range. Results from model calculations taking the natural isotope abundance into account are in good agreement with the observed spectral structures. Pronounced dark resonances are also observed when the dressing radiation field with is generated from a laser with poor coherence properties. The maximum reduction of the ionization signal clearly exceeds 50%, a value which is expected to be the maximum, when the dip is caused by saturation of the transition rate between the intermediate and the Rydberg state due to incoherent radiation. This work demonstrates the potential of dark resonance spectroscopy of high lying electronic states of rare gas atoms. Received 7 May 2000 and Received in final form 25 June 2001  相似文献   

8.
Sulfur atoms are produced in the excited 3s 23p 4 1 D 2 and 3s 23p 4 1 S 0 levels by two-photon photodissociation of CS2 in the gas phase in the region 285–305 nm. These excited atoms are detected by three-photon (two to resonance) ionisation at selected laser wavelengths. Many new transitions have been observed which have not been reported previously. The new dark states that have been accessed by two-photon absorption have been characterised and the energy levels with respect to the ground 3 P 2 state have been determined. Configuration interaction between 6p 3 P 1, 6p 5 P 1, and 4p1 P 1 states, and also between 6p 3 P 2, 6p 5 P 2, and 4p1 D 2 states has been observed. It is found that intermediate states reached from the 1 S 0 level through two-photon absorption lie above the first ionisation potential of S+(4 S 0). It is proposed that autoionisation into the 4 S 0+e continuum is a dominant mechanism in the decay of these levels, although ionisation by a further photon absorption is not ruled out.  相似文献   

9.
本文研究了Xe(6p[1/2]0, 6p[3/2]2, and 6p[5/2]2)原子在聚焦条件下的动力学过程. 激发能级的原子密度在聚焦条件下会显著地增加,因此两个高激发态原子之间的energy-pooling碰撞的概率也会增加. 这种energy-pooling碰撞主要有三种类型. 第一种类型为energy-pooling碰撞导致的电离. 一旦将激发激光聚焦,就可以从侧面的窗口观察到非常明显的电离现象,不论激发能级是6p[1/2]0、6p[3/2]2或6p[5/2]2能级. 这种电离的产生机理是energy-pooling电离或者一个Xe*原子再吸收一个光子产生电离. 第二种类型为跨越较大能极差的energy-pooling碰撞. 当激发能级为6p[1/2]0能级的情况下,两个6p[1/2]0原子碰撞会产生一个5d[3/2]1原子和一个6s''[1/2]0原子. 第三种类型为跨越较小能级差的energy-pooling碰撞. 以5个二次产生的6p能级为上能级的荧光强度都变得更强,并且这些荧光的上升沿都变得更陡峭. 产生这些6p原子的主要机理是energy-pooling碰撞并非简单的碰撞弛豫. 基于理想气体原子之间的碰撞概率公式,推导出两个6p[1/2]0原子的energy-pooling碰撞速率为6.39x108s-1. 此外,6s原子在聚焦条件下的密度也会增加. 因此所有的荧光曲线会因为辐射俘获效应而出现非常严重的拖尾.  相似文献   

10.
Data on excited states of XeKr molecules in the energy range 78280–77600 cm?1 are obtained. Using the method of multiphoton laser photoionization of molecules in a supersonic jet, five vibrational progressions of XeKr molecules are obtained, which are attributed to five electronic-vibrational transitions from the ground state of the XeKr molecule of the symmetry 0+ to excited states of the symmetry Ω = 0+, 1, 2 with the dissociation limit Kr1 S 0 + Xe*6p[5/2]2 and of the symmetry Ω = 1, 2 with the dissociation limit Kr + Xe*6 p [5/2]3. The molecular constants of the corresponding excited states of the XeKr molecule are estimated.  相似文献   

11.
The laser-induced fluorescence (LIF) spectrum of jet-cooled 48TiF has been obtained in the wavelength region of 245-270 nm for the first time. Six pairs of vibronic bands were observed and assigned to two new transitions [37.8]4Φ-X4Φ and 4Δ-X4Φ. Rotational analysis was carried out for the (ν′ = 0-3 to ν″ = 0) vibrational bands of the [37.8]4Φ3/2-X4Φ3/2 and [37.8]4Φ5/2-X4Φ5/2 subbands, and also, the (ν′, 0) and (ν′+1, 0) vibrational bands of the 4Δ1/2-X4Φ3/2 and 4Δ3/2-X4Φ5/2 subbands. The effective equilibrium molecular constants for the [37.8]4Φ3/2 and [37.8]4Φ3/2 upper states were determined. In addition, lifetime measurements were carried out for all of the observed bands under collision-free conditions. On the basis of the spectroscopic constants and lifetime measurements, the electronic transitions involved in the observed high-lying electronic states are discussed.  相似文献   

12.
The metastable 2F7/2 and 2D3/2 states of Yb+ are of interest for applications in metrology and quantum information and also act as dark states in laser cooling. These metastable states are commonly repumped to the ground state via the 638.6 nm 2F7/21D[5/2]5/2 and 935.2?nm 2D3/23D[3/2]1/2 transitions. We have performed optogalvanic spectroscopy of these transitions in Yb+ ions generated in a discharge. We measure the pressure broadening coefficient for the 638.6 nm transition to be 70±10?MHz?mbar?1. We place an upper bound of 375 MHz/nucleon on the 638.6 nm isotope splitting and show that our observations are consistent with theory for the hyperfine splitting. Our measurements of the 935.2 nm transition extend those made by Sugiyama et al., showing well-resolved isotope and hyperfine splitting (Sugiyama and Yoda in IEEE Trans. Instrum. Meas. 44: 140, 1995). We obtain high signal-to-noise, sufficient for laser stabilisation applications (Streed et al. in Appl. Phys. Lett. 93: 071103, 2008).  相似文献   

13.
Experimentally observed superdeformed(SD) rotational bands in ~(36)Ar and ~(40)Ar are studied by the cranked shell model(CSM) with the pairing correlations treated by a particle-number-conserving(PNC) method.This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40.The experimental kinematic moments of inertia J~((1))versus rotational frequency are reproduced well. The backbending of the SD band at frequency around ω =1.5 Me V in ~(36)Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1 d_(5/2)[202]5/2 pairs and 1 f_(7/2)[321]3/2 pairs, which is a consequence of the band crossing between the 1 d_(5/2)[202]5/2 and 1 f_(7/2)[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in ~(40)Ar is mainly affected by the alignments of the neutron 1 f_(7/2)[321]3/2 pairs and proton 1 d_(5/2)[202]5/2 pairs.The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands.  相似文献   

14.
A microplasma is generated in the microhole (400 μm diameter) of a molybdenum-alumina-molybdenum sandwich (MHCD type) at medium pressure (30–200 Torr) in pure argon. Imaging and emission spectroscopy have been used to study the sheath and electron density dynamics during the stationary normal regime and the self-pulsing regime. Firstly, the evolution of the microdischarge structure is studied by recording the emission intensity of the Ar (5p[3/2]1–4s[3/2]1)_{1}) line at 427.217 nm, and Ar+ (4p′ 2P3/2–4s′ 2D5/2)_{5/2}) line at 427.752 nm. The maximum of the Ar+ line is located in the vicinity of the sheath-plasma edge. In both regimes, the experimental observations are consistent with the position of the sheath edge calculated with an ionizing sheath model. Secondly, the electron density is recorded by monitoring the Stark broadening of the Hb_\beta-line. In the self-pulsing regime at 150 Torr, the electron density reaches its maximum value of 4 × 1015 cm-3, a few tens of ns later than the discharge current maximum. The electron density then decays with a characteristic decay time of about 2 μs, while the discharge current vanishes twice faster. The electron density in the steady-state regime is two orders of magnitude lower, at about 6–8 × 1013 cm-3.  相似文献   

15.
Using the light absorption technique in a 132Xe afterglow plasma, we have measured the relative transition probabilities for several xenon lines which have the metastable 6s[32]2 or the resonant 6s[32]1 states as their lowest transition level. Because the transition probabilities of the 8819 Å (6p[52]3 ? 6s[32]2) and 8280 Å (6p[12]0 ? 6s[32]1) lines are relatively well known, we have chosen these as reference lines and have thus been able to determine the absolute values of the transition probabilities for 19 xenon lines corresponding to transitions from 6p, 6p′, 7p, 8p, 9p, 4f and 5f to 6s[32]2, and for four lines corresponding to the transitions 6p?6s[32]1.  相似文献   

16.
The effect of a laser field on the cross section of photoionization of an atom by probe radiation in the region of closely lying autoionizing resonances is studied theoretically. The cross sections in the region of the overlapping autoionizing Rydberg states 5p 5(2 P 1/2)6d′ J = 1 and 5p 5(2 P 1/2)8s′ J = 1 resonantly coupled with the discrete state 5p 5(2 P 3/2)7p[1/2]1 in the xenon atom are calculated. The behavior of the shape and position of resonances in relation to the frequency and intensity of laser radiation is studied.  相似文献   

17.
The nuclear spectroscopic quadrupole moments for the πh9/25/2-, 1/2-[541] and the πh11/29/2-, 9/2-[514] isomeric states in 169Ta have been measured employing the time differential perturbed angular-distribution technique following the nuclear reaction 159Tb(16O, 6nγ)169Ta at beam energy 104 MeV. The ratio of the intrinsic quadrupole moments has been derived as 1.87(13) from the measured quadrupole precession frequencies of the corresponding states. The model-independent analysis of the equilibrium deformation indicates strong prolate- and oblate-driving nature of the 1/2-[541] and 9/2-[514] orbitals in 169,171Ta isotopes, respectively.  相似文献   

18.
The levels of151Eu have been investigated in the (n,n′γ) reaction using nuclear reactor fast neutrons. The energies, intensities and angular distributions of theγ-rays have been measured with the Ge(Li) spectrometer. Four rotational bands with the following band heads and Nilsson configurations have been identified: ground state band, 5/2+ [402]; 21.5 keV, 7/2+[404]; 196.5 keV, 3/2+[411]; 260.5 keV, 5/2+[413]. The low spin states at 332.2 and 336.2 keV have been tentatively assigned to the l/2+[411] Nilsson orbital, but 522.8, 580.0 and 587.0 keV states to the 1/2+[420] Nilsson orbital. The negative parity levels at 353.7, 522.1 and probably 546.2 keV have been proposed basing on theh 11/2 proton state.  相似文献   

19.
The level structure of Dy165 has been investigated at the Karlsruhe research reactor using thermal neutron capture in Dy164. The target was Dy2O3 enriched to 92.71% Dy164. Neutrons were either monochromized by Bragg reflection from a lead crystal or transmitted through a bismuth single crystal filter. High-resolution measurements of the capture spectrum have been performed by means of a Ge(Li) 5-detector pair spectrometer and a Ge(Li) anti-Compton assembly. A large number of new lines has been observed. Cascade relationships were studied by using several techniques: a double coincidence apparatus with 4″ Ø×5″ NaI(Tl) detectors, a coincidence system containing a scintillation detector and a 34 cm3 Ge(Li)-diode as well as a two-parameter system involving the pair spectrometer (with NaI (Tl) as the primary detector) and a single 4″Ø×6″ NaI (Tl) counter. In the framework ofNilsson's model and simple microscopic pictures of vibrational states the results are consistent with the following spectroscopic interpretation: 0 keV, 7/2+[633]; 108.2 keV, 1/2?[521]; 184.3 keV, 5/2″[512]; 533.5 keV, 5/2″ [523]; 538.6 keV, 7/2+[633] +Q22; 570.3 keV, 5/2?[512]+Q22+1/2?[510]; 573.6 keV, 3/2? [521]+1/2?[521]+Q22; 1103.3 keV, 1/2? [521]+Q22+3/2? [521]. For comparison preliminary results are given for the isotonic nucleus Yb169.  相似文献   

20.
High-spin states in175Ta have been populated in the160Gd (19F,4n)175Ta reaction with beams provided by the HI-13 tandem accelerator at the Institute of Atomic Energy in Beijing. A level scheme was constructed from γ-γ coincidence experiments. Seven decay sequences built on 5/2+[402], 1/2?[541], 7/2+[404] and 9/2? [514] proton Nilsson configuration have been extended to higher spin. An anomalously large delay of the neutron AB crossing built on the h9/2 proton Nilsson State 1/2?[541] is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号