首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the generation of high-peak power multi-wavelength picosecond laser pulses using optical parametric amplification (OPA) in BBO seeded with pulses generated in a 5-mm length BaWO4 crystal by stimulated Raman scattering of 18-ps laser pulses at 532 nm. The maximum output energy of the amplified first-Stokes component at 559.7 nm was about 1.76 mJ. The corresponding maximum peak power, pulse duration and spectral line width were measured to be 117.3 MW, 15 ps and 18.0 cm−1, respectively. The multi-wavelength picosecond laser pulses were in the visible and near infrared ranges. Using this Raman-seeded OPA technique, the beam quality of the stimulated Raman scattering pulses can be improved.  相似文献   

2.
We report on four-wave optical parametric amplification of the ultrashort ultraviolet light pulses in bulk fused silica and CaF2. Exact phase-matching in these isotropic media is achieved by means of non-collinear interaction with cylindrical beam focusing. Four-wave optical parametric amplifier efficiently operates in the UV spectral range with 1-ps laser pulses, delivering amplified signal energy exceeding 50 μJ using millijoule pump pulses in the visible (527 nm). Results of scanning of the parametric gain profile suggest that broad amplification bandwidth as wide as ∼20 nm (at FWHM) under these experimental settings is achieved, which might support amplification of sub-10-fs ultraviolet pulses with central wavelength around 330 nm. It is also shown experimentally and verified theoretically that the parametric gain profile exposes a distinct inhomogeneity and its bandwidth notably broadens due to effects of self- and cross-phase modulation imposed by the intense pump beam.  相似文献   

3.
We report on an optical parametric amplifier (OPA) based on two potassium titanyl phosphate (KTP) crystals in a walk-off compensating geometry. An Nd:YLF regenerative amplifier at a 1-kHz repetition rate serves as the pump source. The seed beam is delivered by a synchronously pumped frequency-stabilized optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN). At pump intensities of about 7 GW/cm2 large amplification factors of more than 104 were achieved, resulting in pulse energies of more than 450 μJ and 350 μJ for the signal and idler pulses, respectively, at a 1-kHz repetition rate. In the saturation regime the time–bandwidth product increases from two to three times the Fourier limit, with a pulse duration of 105 ps and a bandwidth of 12.7 GHz at the highest intensities employed. Received: 2 November 2001 / Published online: 14 March 2002  相似文献   

4.
We demonstrate and optimize, for a mJ/ns release at the wavelength 1.064 μm, the operation of a compact laser system designed in the form of a hybrid, active-passive, Q-switched Nd3+:YAG/Cr4+:YAG microchip laser seeding an Yb-doped specialty multi-port fiber amplifier. As the result of the amplifier optimization, ∼1 mJ, ∼1 ns, almost single-mode pulses at a 1-10-kHz repetition rate are achieved, given by a gain factor of ∼19 dB for an 11-μJ input from the microchip laser. Meanwhile, a lower pulse energy, ∼120 μJ, but a much higher gain (∼25 dB) are eligible for the less powerful (0.35 μJ) input pulses.  相似文献   

5.
A novel double-pass noncollinear optical parametric chirped pulse amplifier based on an Yb3+-doped passively mode-locked fiber laser has been demonstrated in this paper. The signal was double-pass amplified in a single nonlinear crystal by a long pump pulse, and the signal and pump pulses of each pass were completely phase matched in the plane of the maximum effective nonlinearity. Net saturated gain of 2×106 was achieved and the superfluorescence was suppressed by increasing the overlap time between the signal and pump pulses.  相似文献   

6.
We report a technique for characterization of ultra-weak fluorescence based on a 355-nm pumped picosecond non-collinear optical parametric amplifier (OPA). In the experiment, we effectively reduced the strong super-fluorescence background by using a series of methods. With the picosecond OPA as the pre-amplifier and the gating pulse, the decay of the fluorescence of Rhodamine 6G dye in ethanol was measured and the fluorescence lifetime was found to be about 941 ps. The gain factor of this parametric fluorescence amplifier was measured to be ∼4.2 × 106, while the energy detection limit was ∼160 aJ per pulse within a 15-ps gating pulse.  相似文献   

7.
The paper reports on an experimental investigation and numerical analysis of noncritically and critically phasematched LiB3O5 (LBO) optical parametric oscillators (OPOs) synchronously pumped by the third harmonic of a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system generates 9.0 W of 355-nm mode-locked radiation with a pulse duration of 7.5 ps and a repetition rate of 84 MHz. The LBO OPO, synchronously pumped by the 355-nm pulses, generates a signal wave tunable in the blue spectral range 457–479 nm. With a power of up to 5.0 W at 462 nm and 1.7 W at 1535 nm the conversion efficiency is 74%. The OPO is characterized experimentally by measuring the output power (and its dependence on the pump power, the transmission of the output coupler and the resonator length) and the pulse properties (such as pulse duration and spectral width). Also the beam quality of the resonant and nonresonant waves is investigated. The measured results are compared with the predictions of a numerical analysis for Gaussian laser and OPO beams. In addition to the blue-signal output visible-red 629-nm radiation is generated by sum-frequency mixing of the 1.535-μm infrared idler wave with the residual 1.064-μm laser radiation. A power of 1.25 W of 1.535-μm idler radiation and 5.7 W of 1.064-μm laser light generated a red 629-nm output power of 2.25 W. Received: 2 February 2000 / Revised version: 28 July 2000 / Published online: 22 November 2000  相似文献   

8.
We report the characteristics of the amplified stimulated Raman scattering (SRS) pulses generated in liquid benzene by a picosecond (ps) β-barium borate (BBO) optical parametric amplifier (OPA). When the OPA system was used as an energy amplifier for SRS pulses, with a pump energy of 2.4 mJ at 355 nm for the OPA, the maximum output energy of the amplified SRS was about 0.73 mJ for the signal and 0.18 mJ for the idler, the energy conversion efficiency was 30.4% from the pump beam to the amplified third order Stokes component at 635.1 nm. The total efficiency would be as high as 37.9% if the output of the idler is also included. The corresponding spectral line width of the amplified Raman pulse was 11.8 cm−1 with a pulse width of 10.9 ps and a peak power of 67 MW. The OPA system was also used as an amplifier for very weak Raman signal, the slope gain factor of this amplifier was found to be as high as 4.1 × 107 and the energy detection limit was as low as 14.8 aJ per pulse, or 48 photons at 635.1 nm, in particular. Such a detection limit corresponds to approximately 0.5 photons per pulse if the time-gate of the OPA is reduced to 150 fs and it is about the same as or even better than a recently report on the 0.75 photons detection limit for a 150-fs OPA of coherent signal at 800 nm.  相似文献   

9.
Optical parametric amplification of multi-frequency seed pulses generated in a mixture of compressed hydrogen and methane by stimulated Raman scattering of 1 ps, 1 kHz laser pulses at 395.8 nm has been studied. Efficient generation of spectrally narrow ultrashort pulses with a spatial distribution close to the Gaussian profile of the pump beam was obtained in the visible and near infrared ranges.  相似文献   

10.
In a fiber amplifier, spectral compression due to self-phase modulation is demonstrated for ultrashort pulses. We report the generation of near-transform-limited picosecond pulses with peak powers of several kW at a repetition rate of 74 MHz and diffraction-limited beam quality in a Yb-doped fiber amplifier when seeding with a negative chirped pulse. Received: 17 September 2001 / Revised version: 22 November 2001 / Published online: 17 January 2002  相似文献   

11.
A low-repetition-rate (10-Hz), picosecond (ps) optical parametric generator (OPG) seeded at the idler wavelength with a high-power diode laser is demonstrated. The output of the OPG at ∼566 nm is amplified in dye cells, resulting in signal enhancement by more than three orders of magnitude. The nearly transform-limited beam at ∼566 nm has a pulsewidth of ∼170 ps, with an overall output of ∼2.3 mJ/pulse. The laser is tuned either by tuning the nonlinear crystal or the seed-laser current. The applications of such a simple, compact, high-performance, tunable ps laser system for linear and nonlinear spectroscopies are outlined.  相似文献   

12.
We describe a method of ultrashort-pulse and ultrafast-pulse-train generation through optical parametric amplification of a laser beat wave. Numerical simulation shows that 250-fs laser pulses at 1.55 μm are generated from a beat-wave seeded optical parametric amplifier pumped by a 30-ps laser at 1064 nm. The pulse compression is attributable to sideband generation and parametric amplification under group velocity mismatch. Our experimental result confirms efficient generation of comb-like sidebands for the mixing waves from such an optical parametric amplifier.  相似文献   

13.
We report the development and application of pulsed optical parametric generator (OPG) and optical parametric oscillator (OPO) systems that are injection seeded with near-infrared distributed feedback diode lasers. The OPG is injection seeded at the idler wavelength without the use of a resonant cavity. Two counter-rotating, beta-barium-borate (β-BBO) crystals are used in the OPG. These crystals are pumped by the third harmonic, 355-nm output of an injection-seeded Nd:YAG laser. An OPO version of the system has also been developed by placing two flat mirrors around the two β-BBO crystals to form a feedback cavity at the signal wavelength. The OPO cavity length is not actively controlled. The output signal beam from the OPG or OPO is amplified using an optical parametric amplifier (OPA) stage with four β-BBO crystals. The frequency bandwidths of the signal and idler laser radiation from OPG/OPA and OPO/OPA systems have been determined to be slightly greater than 200 MHz. The temporal pulses from each system are smooth and near-Gaussian. High-resolution optical absorption measurements of acetylene (C2H2) were performed as another check of the frequency spectrum of the idler beam. The frequency-doubled signal output of the OPO/OPA system was used to perform high-resolution, single-photon, laser-induced fluorescence (LIF) spectroscopic studies of the (0,0) vibrational band of the A 2Σ+X 2Π electronic transition of nitric oxide (NO) at low pressure. Excellent agreement was obtained between the theory and the experiment. The signal output of the OPG/OPA system was also used for sub-Doppler, two-photon LIF spectroscopic studies of the same vibration–rotation manifold of NO.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

14.
The amplification of ps and fs pulses with peak powers of up to 4.5 kW has been investigated in a single quantum well InGaAs tapered amplifier. The pulses with durations of 100 fs or 2 ps were generated by a modelocked titanium-sapphire laser. The amplified pulses indicate strong gain saturation and carrier generation due to photon absorption in the laser active region which causes a temporal broadening of the amplified pulses as well as modifications of the optical spectrum. The gain recovery time was measured by a pump-probe experiment. The experimental results are analyzed with respect to the sub-ps gain dynamics which is described by a relaxation time approximation.  相似文献   

15.
Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr5(PO4)3F laser. The broad gain bandwidth can completely support ∼6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm.  相似文献   

16.
The results of numerical modelling of cascaded compression of the first and second Stokes pulses during regenerative regime of the forward transient stimulated Raman amplification are presented for the case when the walk-off length of the first Stokes pulse due to group velocity mismatch is shorter than the length of the nonlinear medium. The influence of the initial amplitudes of the seed first Stokes pulses, its durations and its time delay with respect to the pump pulse, the Kerr nonlinearity of the medium on the conversion efficiency, duration and propagation factor M2 of the first and second Stokes pulse are studied. It is demonstrated that for the pump pulse duration of 1 ps the duration of the compressed second Stokes pulses in a KGW crystal near the beam axis may be approximately 14 times shorter than the pump pulse duration. It is shown that the propagation factor of the compressed pulses increases significantly because of complex spatial-temporal dynamics of compression and the influence of Kerr nonlinearity of Raman medium.  相似文献   

17.
We report the operation of a Ti:sapphire oscillator-amplifier system with a high, variable repetition rate adjustable between 1 and 15 kHz. The oscillator uses cavity dumping and the multipass amplifier is based on a liquid nitrogen cooled crystal. The system produces pulses with 28 fs duration at 1.1 mJ pulse energy. When pumping the amplifier crystal with 72 W, an average output power of 11 W is obtained at a repetition rate of 10 kHz, resulting in a quantum efficiency of 25%. The output pulses are used to generate high harmonic radiation in argon, neon, and helium, which are detected up to a photon energy of 110 eV, limited by the sensitivity of the toroidal grating employed.  相似文献   

18.
A novel parametric generator-amplifier system is discussed which for the first time allows the generation of tunable pulses in the infrared with substantial pulse shortening and with high energy conversion of up to 20%. Starting with an intense laser pulse of a mode-locked Nd: glass laser system of ≈ 8 ps, a signal pulse at ≈ 6500 cm-1 is produced by a single path parametric generator. This signal pulse is subsequently amplified generating an intense idler pulse in the IR. Varying the time delay between the signal and pump pulse in the amplifier stage, the pulse duration of signal and idler is readily adjusted. The shortest pulses are nearly bandwidth limited of duration 0.5 ps with energy conversion exceeding 5% in the frequency range around 6500 cm-1.  相似文献   

19.
We report on efficient generation of 1550-nm photon pairs in a periodically poled lithium niobate waveguide using the spontaneous parametric down-conversion process. Such photon pairs are expected to find applications in fiber-based long-distance quantum communication. Pumping the waveguide with a pulsed semiconductor laser with a pulse rate of 800 kHz and a maximum average pump power of 50 μW, we obtain a coincidence rate of 600 s−1. Despite only two single-photon detectors are used, we gain some information about the photon-number distribution. Our measurements are found to be in agreement with a Poissonian photon-pair distribution, but clearly differ from the expected outcomes for both conventional and two-mode squeezed states, the latter corresponding to a thermal photon-pair distribution. The Poissonian photon-pair distribution is also explained by comparing the coherence time of the pump light and of the detected photons. An average of 0.9 generated photon pairs per pulse can thus be inferred.  相似文献   

20.
A two-stage optical parametric amplifier driven by a frequency-tripled beam from the high-energy iodine laser system SOFIA was built. This single-shot Optical Parametric Chirped Pulse-Amplification facility (OPCPA) and the system synchronizing the pump and signal pulses are described in detail. The chirped seed pulse of a Ti:sapphire oscillator running at the central wavelength of 800?nm is amplified in the two-stage (LBO and KDP) optical parametric amplifier over 108 times. The amplified spectral bandwidth of 68?nm corresponds to the pulse duration of 14?fs when a transform-limited pulse is assumed. This implies a compressed pulse of TW power. Systematic gain measurements reveal a good match with the theoretical predictions. Signal and idler beam fluence profiles are presented. The suitability of the iodine photo-dissociation laser as a pump source for the OPCPA technique is thus proved for the first time experimentally. A distinctive feature of the iodine laser is its very narrow gain bandwidth (<0.1?cm?1) and, therefore, the conventional chirped-pulse amplification technique does not lead to pulse durations at the femtosecond level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号