首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two groups of transparent conductive ZnO/Ag/ZnO, ZAZ, multilayer coatings were successively deposited by direct current (DC) magnetron sputtering. Sputtering was carried out from zinc (Zn) and silver (Ag) metallic targets. The effects of Ag layer thickness and ZnO top layer thickness on the properties of the ZAZ multilayer system were examined using different analytical methods. The influences of the Ag layer thickness and ZnO top layer thickness on structural properties were studied using X-ray diffraction. The thicknesses of ZAZ multilayer system were determined using X-ray reflectometry. A sheet resistance of 2.3 Ω/sq at an Ag layer thickness of 17.7 nm was obtained. The sheet resistance changes slightly with ZnO top layer thickness. The optical properties of the films were analyzed. Both Ag layer thickness and ZnO top layer thickness affect transmittance. The optical constants of the ZAZ multilayer system were calculated from transmittance and reflectance measurements. The figure of merit was applied on the ZAZ coatings and the most suitable films for the application as transparent conductive electrodes were determined.  相似文献   

2.
Transparent conductive ZnO/Ag/ZnO multilayer electrodes having much lower electrical resistance than the widely used transparent electrodes were prepared by simultaneous RF magnetron sputtering of ZnO and DC magnetron sputtering of Ag. An Ag film with different thickness was used as intermediate metallic layers. The optimum thickness of Ag thin films was determined to be 6 nm for high optical transmittance and good electrical conductivity. With about 20-25 nm thick ZnO films, the multilayer showed high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of the multilayers were changed mainly by Ag film properties. A high quality transparent electrode, having sheet resistance as low as 3 ohm/sq and high transmittance of 90% at 580 nm, was obtained and could be reproduced by controlling the preparation parameter properly. The above property is suitable as transparent electrode for dye sensitized solar cells (DSSC).  相似文献   

3.
Structural and optical properties of Sc-doped ZnO films grown by RF magnetron sputtering at different substrate temperatures were investigated. All the ZnO:Sc films are polycrystalline with the hexagonal wurtzite structure. X-ray diffraction patterns of the films showed that the doped-films have (0 0 2) as preferred orientation when the deposition temperature was increased from 250 °C to 300 °C. All the films are in a state of compressive stress, whereas the stress decreases gradually with increasing substrate temperature. The average transmittance of these films was above 90% in the wavelength range from 400 nm to 800 nm. The optical band gap of these films was determined. The optical constants of these films were determined using transmittance and reflectance spectra.  相似文献   

4.
The investigation of some solar radiations of interest for astrophysicists requires optics in the 80-130 nm vacuum ultra-violet spectral range (VUV). In this domain, where both transmittance and reflectance of most materials are very low, the measurement of optical constants is specifically difficult, and optical data are consequently often either inexistent or uncertain. Reliable modelling of optical components for VUV, like polarizing multi-layered mirrors, necessitates prior measurement of complex indices of the thin films involved in the coating. Fluorides like MgF2 or AlF3 are among the rare materials capable to contribute to multi-layer mirrors in the VUV.We have determined optical constants of thin films of these two materials by using a two media reflectance method at normal incidence and a graphical determination particularly suited to this VUV region, which we presented in a previous paper. Optical constants are determined in the range 60-124 nm with 2 nm step, and are compared to existing data. On the basis of these measured indices, polarizing mirrors for λ1 = 121.6 nm or λ2 = 103.2 nm have been modelled and fabricated. Their reflectance measured versus incidence angle by using monochromatized synchrotron radiation at the above wavelengths is found in agreement with the calculated predictions.  相似文献   

5.
In order to find a non-invasive way to improve the efficacy of skin optical clearing with topically applied optical clearing agents (OCA), we evaluated the effect of Azone as a chemical penetration enhancer on optical clearing of intact skin in vitro. Fresh porcine skin with topical application of glycerol (G) mixed with various concentrations of water-soluble Azone (Aw) or propylene glycol (PG) mixed with oil-soluble Azone (Ao) was investigated. We measured changes in optical transmittance and diffuse reflectance of the skin under treatment with a near-infrared spectrophotometer. Light transmittance at 1276 nm increased by 37.3% and 41.1% at 60 min after the treatment in the cases with 40%PG5%Ao and 40%G5%Aw, respectively. Diffuse reflectance at 1066 nm decreased by 20.6% and 29.3% at 60 min after the treatment with 40%PG5%Ao and 40%G5%Aw, respectively. Forty percent glycerol or propylene glycol with the addition of Azone could achieve the same optical clearing effect as 80% glycerol. The results indicated that skin optical clearing with the topical application of glycerol and propylene glycol was markedly enhanced by both water-soluble and oil-soluble Azone. Skin penetration enhancing effect of Azone accounts probably for the skin clearing enhancement. In addition, Azone itself has shown optical clearing capability.  相似文献   

6.
A new organic nonlinear optical material 1-(4-fluorostyryl)-4-nitrostilbene (FNS) has been synthesized and single crystals of FNS were grown using solvent evaporation solution growth technique (SESGT) by 2-butanon solvent. Single crystal x-ray diffraction analysis reveals the unit cell parameters of the grown crystal are a = 9.494(4) Å, b = 9.864(2) Å, c = 19.501(7) Å and it belongs to monoclinic system with noncentrosymmetric space group. Optical transmittance of the grown crystal has been studied by UV-Vis-NIR spectrum. The optical properties of FNS have been studied by means of optical transmittance measurements in the wavelength range of 190–1100 nm The optical constants were calculated from the optical transmittance (T) data such as refractive index (n), extinction coefficient (k) and reflectance (R). The optical band gap (Eg) of FNS is 3.27 eV with direct transition. The complex dielectric (?) constant of the grown FNS crystal was determined. The second harmonic generation (SHG) efficiency of the grown FNS crystal has been studied by using Kurtz-Perry powder technique and it shows 12 times relatively greater than KDP.  相似文献   

7.
Chia-Jen Ting  Chin-Ju Hsu 《Optik》2010,121(20):1877-1880
The optical properties of gold layer deposited on antireflection subwavelength-structured surface are first exposed. The experimental results of the reflectances and transmittances for several different thicknesses of gold-deposited layers on the subwavelength structures are carried out. The nanostructured surface with spatial period and a diameter of about 230 nm and height of about 150 nm on polyethylene terphthalate (PET) film is fabricated by micro-replication process of UV imprinting. Comparing these with the bare gold-deposited layer and bare nanostructure, the results show that the optical films with the suitable gold layer deposited on antireflection subwavelength-structured surface has high transmittance and low glare in the visible spectral range and high reflectance in the infrared range. That is to say, when the antireflection subwavelength-structured surface is coated with a gold layer of several tens of nm thickness, it will have some unique optical characters.  相似文献   

8.
Design of high-dispersion mirrors (HDMs) using a proposed multi-swarm optimization method is reported. We design HDMs for Yb:YAG disk oscillator at 1030 nm and ultrashort pulse Cr:YAG laser at 1550 nm. The results show that the optimum group delay dispersion and reflectance can be obtained with optimal number of layers. The proposed optimization method has a fast convergence rate and powerful global search ability and can be utilized effectively for the design of a variety of optical thin film filters.  相似文献   

9.
The metallic-glass film of ZrCu layer deposited by co-sputtering was utilized as the metallic layer in the bi-layer structure transparent conductive electrode of ITO/ZrCu (IZC) deposited on the PET substrate using magnetron sputtering at room temperature. In addition, the pure Ag metal layer was applied in the same structure of transparent conductive film, ITO/Ag, in comparison with the IZC film. The ZrCu layer could form a continuous and smooth film in thickness lower than 6 nm, compared with the island structure of pure Ag layer of the same thickness. The 30 nm ITO/3 nm ZrCu films could show the optical transmittance of 73% at 550 nm wavelength. The 30 nm ITO/12 nm ZrCu films could show the better sheet resistance of 20 Ω/sq, but it was still worse than that of the ITO/Ag films. It was suggested that an alloy system with lower resistivity and negative mixing heat between atoms might be another way to form a continuous layer in thickness lower than 6 nm for metal film.  相似文献   

10.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

11.
Nanoporous ZnO/SiO2 bilayer coatings were prepared on the surface of glass substrates via sol-gel dip-coating process. The structural, morphological and optical properties of the coatings were characterized. The refractive indices of ZnO layer and SiO2 layer are 1.34 and 1.21 at 550 nm, respectively. The transmittance and reflectance spectra of the coatings were investigated and the broadband antireflection performance of the bilayer structure was determined over the solar spectrum. The solar transmittances in the range of 300-1200 nm and 1200-2500 nm are increased by 6.5% and 6.2%, respectively. The improvement of transmittance is attributed to the destructive interference of light reflected from interfaces between the different refractive-index layers with an optimized thickness. Such antireflection coatings of ZnO/SiO2 provide a promising route for solar energy applications.  相似文献   

12.
A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes.  相似文献   

13.
In this work, the synthesis of molecular materials formed from metallic phthalocyanines and 1,4-phenylenediamine is reported. The powder and thin film (∼80-115 nm thickness) samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds in the IR spectroscopy studies, which suggests that the thermal evaporation process does not alter these bonds. The morphology of the deposited films was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and their optical and electrical properties were studied as well. The optical parameters have been investigated using spectrophotometric measurements of transmittance in the wavelength range 200-1200 nm. The absorption spectra recorded in the UV-vis region for the deposited samples showed two bands, namely the Q and Soret bands. The optical activation energy was calculated and found to be 3.41 eV for the material with cobalt, 3.34 eV for the material including lead and 3.5 eV for the material with iron. The effect of temperature on conductivity was measured for the thin films and the corresponding conduction processes are discussed in this work.  相似文献   

14.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

15.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

16.
Mg-Ni multilayer films with sequential Mg and Ni layers were prepared by direct current magnetron sputtering. The substrate temperature influences the microstructure of the films greatly. The film deposited at 298 K exhibits multilayered structure, while the film shows nanocrystalline/amorphous composite structure at the deposition temperature of 473 K. The optical properties between hydrogenation/dehydrogenation states of the films were performed using spectrophotometer in visible light region. The film deposited at 473 K can switch from mirror-like metallic state towards brownish yellow transparent state under 0.6 MPa H2 at 298 K, and the optical transmittance modulation reaches up to 20% both at a wavelength of 770 nm and IR region, while the film deposited at 298 K exhibits low optical change, and the optical switching behavior can hardly be found. The extra free energy stored in the boundary of the nanocrystallines benefits the formation of magnesium-based hydride, resulting in the enhancement of the optical switching properties of the Mg-Ni film deposited at 473 K.  相似文献   

17.
Laser-induced fluorescence, Raman and absorption spectroscopy are used to investigate reversible degradation of transmission in PMMA optical fibers. When exposed to 254 nm UV light, optical transmission of PMMA plastic optical fiber in 400-800 nm range shows a significant increase in attenuation for shorter wavelengths. Over a period of 10 days following UV exposure, the transmittance of the plastic fiber recovers to a significant fraction of its pre-exposure value. UV-exposed fiber exhibits strong laser-induced fluorescence with 488 nm argon-ion laser. This fluorescence spans a spectral region between 450 nm and 750 nm with a peak around 580 nm. The fluorescence intensity decreases over several days following UV exposure. Likewise, Raman is also used to investigate degradation process. Freshly UV-exposed fiber shows total absence of Raman spectrum of PMMA. Following UV exposure, recovery of Raman signal over several days is correlated to the recovery of fiber transmittance as well as the decay of laser-induced fluorescence. A widely believed plausible explanation for UV-induced increase of attenuation involves formation of different macro radicals which recombine progressively after UV is stopped. Laser-induced fluorescence over several days is reported here providing direct evidence for molecular-level deterioration and recovery of PMMA.  相似文献   

18.
CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E0 and dispersion energy Ed of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.  相似文献   

19.
We investigated the effects of in situ plasma-treatment on optical and electrical properties of index-matched indium tin oxide (IMITO) thin film. To render the IMITO-coated surface hydrophilic and study the optical and electrical characteristics, we performed in situ oxygen plasma post-treatment without breaking vacuum. The 94.6% transmittance in the visible wavelength range (400-700 nm) increased on average to 96.4% and the maximum transmittance reached 98% over a broad wavelength range. The surface roughness and sheet resistance improved from 0.9 nm and 200 Ω/sq to 0.0905 nm and 100 Ω/sq, respectively, by in situ plasma post-treatment. We confirmed by contact angle measurement that the hydrophobic IMITO surface was altered to hydrophilic. The improved optical and electrical characteristics of in situ plasma-treated IMITO makes it adequate for high-resolution liquid crystal on silicon displays.  相似文献   

20.
Indium tin oxide (ITO) films were produced by low-energy oxygen ion beam assisted electron-beam evaporation. The dependence of surface morphology, electrical and optical properties on evaporation rate, oxygen ion beam energy and density, as well as substrate temperatures was characterized by atomic force microscopy, X-ray photoelectron spectroscopy, Hall-effect and optical transmittance measurements. The results show that high-quality ITO films (resistivity of 7.0×10−4 Ω cm, optical transmittance above 85% at wavelength 550 nm, surface roughness of 0.6 nm in root mean square) can be obtained at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号