首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel measurement method of temperature based on the phenomena that the phase difference between principle polarization states in the optical retarder is function of temperature is described. The polarization state of optical beam is changed as it passes through the optical retarder, which depends on the temperature. The temperature of optical retarder is determined by comparison of the power difference between principal polarization states. We demonstrate successfully the temperature measurement by using a polarization maintaining fiber as the optical retarder. With a 100 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.236 rad/°C and the measurement error was ±0.038°C over the temperature range of −2.6 – +3.4°C. With a 11.5 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.021 rad/°C and the measurement error was ±0.79°C over the temperature range of −8.5 – +86.5°C.  相似文献   

2.
Using the phenomenon of total internal reflection and a beam splitting device, a technique of simultaneous phase-shift interferometry is proposed for measuring the full-field refractive index. Because this method applies a beam splitting device that mimics the characteristics of beam splitting and phase modulation, four interferemetric images of various phase distributions can be simultaneously captured. Therefore, this setup can avoid errors caused by non-simultaneous capturing of images and offers the benefits of high stability, ease of operation, and real-time measurement. Furthermore, using the phenomenon of total internal reflection, the phase difference between p- and s-polarized light varies considerably with the refractive index of a tested specimen. This can substantially increase the measurement resolution. The feasibility of this method is verified using an experiment, and the measurement resolution can be higher than 3.65 × 10−4 RIU.  相似文献   

3.
In this study an alternative method based on surface plasmon resonance is proposed for in-situ monitoring of variation in the refractive index of a test sample. A wavelength-modulated light source and an unequal-path-length optical configuration heterodyne interferometer are used to detect the phase difference change, which can then be used to estimate the change in the refractive index of a test sample. The experimental results demonstrate a phase stability of 0.02°. The resolution power of the refractive index is 1.5 × 10− 6 RIU. This method has several advantages over previously used methods such as simple optical setup, easier operation in real time, and low cost.  相似文献   

4.
The modified super-wide-angle Sagnac imaging interferometer (MSASII) based on liquid crystals on silicon (LCoS) is proposed as a novel device for the detection of the upper atmospheric wind field. This device employs the phase-only modulation (POM) of LCoS coupled with the MSASII, and can measure phase changes in multi-band emissions without moving mirror. It can be used to replace the conventional Michelson’s interferometer with step-moving mirror device. The optical path difference (OPD) equation of MSASII-LCoS is derived, and the four compensation conditions (field, chromatics, thermal and achromaticity of thermal compensations) are discussed within the scope of wind measurement. The real parameters of LCoS and optical glasses are selected for numerical simulation and analysis. Three aurora lines (732.0, 630.0 and 557.7 nm) are considered, and their phase variations are 3.61, 2.02 and 0.15 fringes at the same incident angle of 3°, respectively. The rate of change of OPD with temperature is the magnitude of 10−6 cm/K, and the corresponding phase variations are within 0.09 fringes. The accuracy of phase modulation can be 0.614×10−2 rad when LCoS of 10-bits is used. The novel model MSASII-LCoS shows its advantage for atmospheric wind measurement in the aspects of the overall structure, anti-vibration, operational flexibility and detection accuracy.  相似文献   

5.
In this paper, we present a real-time measurement and adjustment method, based on scanning imaging, for optical transmitter which emits 90° × 2° linear laser beam. This novel optical arrangement consists of an area array CCD and two linear array CCDs. According to the relationship between the positions, angles of transmitter optical components and the beam parameters of emergent laser, the system can help us to decide the real-time adjustment of optical transmitter by measuring the related beam parameters. In order to improve the measurement speed, avoid occlusion and ensure simultaneous measurement, the two linear array CCDs are placed at near field, far field and separated by a definite angle to acquire the beam intensity distribution through suitable nonlinear correction during the process of scanning. After a complete scanning, the beam parameters and the spot image are acquired by continuous measurement. The proof-of-principle experiments showed that the measurement results were in agreement with the analysis. The presented method was applied to direct fast adjustment for higher quality on the assembly of the optical transmitter. The presented procedure is highly advantageous for diverse laser beam emitted from the optical transmitter, such as elliptic, linear and so on.  相似文献   

6.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

7.
Radially-polarized beams can be strongly amplified without significant birefringent-induced aberrations. However, radially-polarized beam is a high-order beam, and therefore has to be transformed into a fundamental Gaussian beam for reduction the beam-propagation factor M2. In effort to transform the radially-polarized beam to a nearly-Gaussian beam, we consider effect of a spiral phase element (SPE) on the Laguerre-Gaussian (LG) (0, 1) beam with radial polarization, and compare this with the case when the input beam is a LG (0, 1) beam with spiral phase and uniform or random polarization. The LG (0, 1) beam with radial polarization, despite its identity in intensity profile to the beam with spiral phase, has distinctly different properties when interacting with the SPE. With the SPE and spatial filter, we transformed the radially-polarized (0, 1) mode with M2 = 2.8 to a nearly-Gaussian beam with M2 = 1.7. Measured transformation efficiency was 50%, and the beam brightness P/(M2)2 was practically unchanged. The SPE affects polarization state of the radially-polarized beam, leading to appearance of spin angular momentum in the beam center at the far-field.  相似文献   

8.
An eye-safe, high peak power optical parameter oscillator (OPO) intracavity pumped by electro-optic Q-switched Nd:YAG laser is presented. This OPO is based on a 20 mm length KTiOAsO4 crystal with non-critical phase matching (θ = 90°, ?=0°) cut. An aperture ∅3 mm acted as limiting diaphragm to get good beam quality of pumping laser. The output energy of 25 mJ at the signal wavelength 1.53 μm was obtained with repetition rate of 1 Hz. The highest peak power intensity was up to 88 MW/cm2 with pulse width of 4 ns. Without diaphragm, the maximum output energy of 90 mJ was achieved with area of light spot (∅6 mm) four times larger, but the peak power intensity was lower.  相似文献   

9.
The magnetic and structural properties of Fe ion-implanted GaN was investigated by various measurements. XRD results did not show any peaks associated with second phase formation. The magnetization curve at 5 K showed ferromagnetic behavior for 900 °C-annealed sample. In zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements, the irreversibility and a cusp-like behavior of the ZFC curve were observed for 900 °C-annealed sample. These behaviors are typically observed in superparamagnetic or spin glass phase. While the temperature dependence magnetization of 800 °C-annealed sample showed non-Brillouin-like curve and it is not exhibited ferromagnetic hysteresis at 5 K. In XPS measurement, the coexistence of metallic Fe (Fe0) and Fe–N bond (Fe2+ and Fe3+) for Fe 2p core level spectra is observed in as-implanted sample. But 700–900 °C-annealed samples showed only Fe–N bond (Fe2+ and Fe3+) spectra. For Ga 3d core level spectra only Ga–N bonds showed for as implanted with 700–900 °C-annealed samples. From XPS results, it could be explained that magnetic property of our films originated from FeN structures.  相似文献   

10.
The experimental results of a high-power 3.8 μm tunable laser are presented on a quasi-phase-matched single-resonated optical parametric oscillator in PPMgO:CLN pumped by a 1064 nm laser of an elliptical beam. Theoretical analyses of the PPMgO:CLN wavelength tuning are presented. The pump source was an acousto-optical Q-switched cw-diode-side-pumped Nd:YAG laser. The beam polarization matched the e-ee interaction in PPMgO:CLN. When the crystal was operated at 90 °C and the pump power was 150 W with a repetition rate of 10 kHz, average output power of 22.6 W at 3.86 μm and 63 W at 1.47 μm was obtained. The slope efficiency of the 3.86 μm laser with respect to the pump laser was 17.8%. The M2 factors of the 3.86 μm laser were 1.74 and 4.86 in the parallel and perpendicular directions, respectively. The mid-IR wavelength tunability of 3.7-3.9 μm can be achieved by adjusting the temperature of a 29.2 μm period PPMgO:CLN crystal from 200 °C to 30 °C, which basically is accorded with the theoretic calculation.  相似文献   

11.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

12.
Recently, the measurement of phase transfer functions (PTFs) of piezoelectric transducers has received more attention. These PTFs are useful for e.g. coding and interference based imaging methods, and ultrasound contrast microbubble research. Several optical and acoustic methods to measure a transducer’s PTF have been reported in literature. The optical methods require a setup to which not all ultrasound laboratories have access to. The acoustic methods require accurate distance and acoustic wave speed measurements. A small error in these leads to a large error in phase, e.g. an accuracy of 0.1% on an axial distance of 10 cm leads to an uncertainty in the PTF measurement of ±97° at 4 MHz. In this paper we present an acoustic pulse-echo method to measure the PTF of a transducer, which is based on linear wave propagation and only requires an estimate of the wave travel distance and the acoustic wave speed. In our method the transducer is excited by a monofrequency sine burst with a rectangular envelope. The transducer initially vibrates at resonance (transient regime) prior to the forcing frequency response (steady state regime). The PTF value of the system is the difference between the phases deduced from the transient and the steady state regimes. Good agreement, to within 7°, was obtained between KLM simulations and measurements on two transducers in a 1-8 MHz frequency range. The reproducibility of the method was ±10°, with a systematic error of 2° at 1 MHz increasing to 16° at 8 MHz. This work demonstrates that the PTF of a transducer can be measured in a simple laboratory setting.  相似文献   

13.
In this investigation, carbon sputtering yields were measured experimentally at varying angles of incidence under Xe+ bombardment. The measurements were obtained by etching a coated quartz crystal microbalance (QCM) with a low energy ion beam. The material properties of the carbon targets were characterized with a scanning electron microscope (SEM) and Raman spectroscopy. C sputtering yields measured under Ar+ and Xe+ bombardment at normal incidence displayed satisfactory agreement with previously published data over an energy range of 200 eV-1 keV. For Xe+ ions, the dependence of the yields on angle of incidence θ was determined for 0° ≤ θ ≤ 80°. Over this range, an increase in C sputtering yield by a factor of 4.8 was observed, with the peak in yield occurring at 70°. This is a much higher variation compared to Xe+ → Mo yields under similar conditions, a difference that may be attributed to higher scattering of the incident particles transverse to the beam direction than in the case of Xe+ → C. In addition, the variation of the yields with θ was not strongly energy dependent. Trapping of Xe in the surface was observed, in contrast to observations using the QCM technique with metallic target materials. Finally, target surface roughness was characterized using atomic force microscope measurements to distinguish between the effects of local and overall angle of incidence of the target.  相似文献   

14.
We have developed a practical and precise frequency measurement system at 1.5 μm telecommunication band. An electro-optic-modulator based optical frequency comb is phase-locked to a dither-free acetylene-stabilized laser to realize an optical frequency comb with frequency uncertainty of 10 kHz (5 × 10−11) and the linewidth of 15 kHz. The present frequency comb can be also used as an optical frequency reference grid defined by ITU-T (International Telecommunication Union, Telecommunication Standardization Sector). Using the present frequency measurement system, we have demonstrated the first optical frequency measurement of 12C16O overtone absorption lines around 1.56 μm with the uncertainty of lower than 900 kHz.  相似文献   

15.
In this work, 650 nm polycrystalline SnS thin films were grown by thermal evaporation of high purity tin sulfide powder at 250 °C substrate temperature, followed by post deposition annealing at 200 °C and 300 °C for 2, 4 and 6 h, and at 400 °C for 2 and 4 h in argon ambient. The XRD pattern of the as-deposited and annealed SnS films led to the conclusion that the as-deposited films were polycrystalline in nature with preferentially oriented along (1 1 1) direction. The direct bandgap of all the films was found to be observed between 1.33 and 1.53 eV. Except for annealing at 400 °C all the films were nearly stoichiometric in nature, suggesting lower rate of desulfurization at that ambient. However, higher annealing temperature has resulted in the segregation of tin phase. All the films showed good absorption in the visible range. The as-deposited and annealed films showed p-type conductivity. Hall measurement revealed the carrier concentration and mobility ranging from 1015 to 1016 cm−3 and 0.8 to 31.6 cm2 V−1 s−1 respectively. The photoconductivity measurements of all the SnS films were carried out by recording the lowering of resistance of the respective films with time under illumination.  相似文献   

16.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

17.
The sol-gel dip-coating method is used for the preparation of MoO3 thin films. The 6 layered MoO3 films were prepared and annealed at various temperatures in the range of 200-350 °C. The band gap value for MoO3 films were calculated from optical absorption measurements and it is in the range of 3.55-3.73 eV. XRD spectrum reveals (0 2 0) is the major diffraction plane for the films prepared above 250 °C, which reveals the formation of MoO3 in α-orthorhombic phase. The films prepared at 200 °C and 250 °C exhibits amorphous nature. The FTIR spectrum confirms the presence of Mo-O-Mo and MoO bonds. Nanorods were observed in the SEM images in the case of MoO3 films prepared above 250 °C. The films prepared at 250 °C exhibit maximum anodic diffusion coefficient of 9.61 × 10−11 cm2/s. The same film exhibits the change in optical transmission of 58.4% at 630 nm with the optical density of 0.80.  相似文献   

18.
Ag-N doped ZnO film was synthesized by ion beam assisted deposition and its electrical properties and annealing property were investigated. The films remained p-type even after annealing at 400 °C in air for 10 min. While the annealing temperature went up to 500 °C, the conduction type of these films shifted from p-type to n-type. The p-type ZnO film revealed low resistivity (0.0016 Ω cm), low Hall mobility (0.65 cm2 V−1 s−1) and high carrier concentration (5.8 × 1020 cm−3). ZnO p-n homojunction consisting of a p-type layer (Ag-N doped ZnO film) and an n-type layer (In-doped ZnO film) had been fabricated by ion beam assisted deposition. With electrical measurement, its current-voltage curve had a typical rectifying characteristic with current rectification ratio of 25 at bias ±5 V and a reverse current of 0.01 mA at −5 V. The depletion width was estimated 3.8 nm by using p-n junction equation.  相似文献   

19.
A high-resolution spectroscopy technique is proposed with an optical phase modulator combined with an interleaved optical frequency comb. The optical phase modulator and a frequency-locked laser light guarantee a spectral resolution less than 1 MHz on an absolute frequency axis. A wide measurement frequency range was realized using a 25 GHz optical frequency comb lying over a 4 THz frequency region. An extraction of single tooth intensity from the comb was realized by a heterodyne technique with a frequency-tunable laser used as a local oscillator. Also, the 25 GHz optical frequency comb was interleaved to generate four 100-GHz combs for removing the crosstalk from the 25 GHz neighboring sidebands in the teeth. This proposed spectroscopy technique was experimentally demonstrated with a resonator of less than 1 MHz linewidth and a H13C14N gas cell. Thus, a measurement frequency range higher than 4 THz (1530 nm-1560 nm) was confirmed with an effective spectral resolution 100 kHz order. In addition, the characteristics of the proposed system were compared with those of the previous system with a single-sideband (SSB) optical modulator.  相似文献   

20.
We demonstrate narrow band optical filter like frequency response with full width half maximum (FWHM) of nearly (1.75 ± 0.25) Hz in fluorescein doped boric acid glass films [10−4 M], using modulated optical phase conjugation and a nearly non-degenerate four wave mixing technique. Modulated optical phase conjugation signals are described in the limit of a weak probe and relatively strong pump beams. Both pump beams are of nearly equal intensity at a wavelength of 514.5 nm from a continuous-wave Ar+ laser. The probe beam frequency has been detuned with a ramp signal using a piezo electric mirror.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号