首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions.  相似文献   

2.
We have studied the electronic structure of β-Ga2O3 using the first principles full-potential linearized augmented plane wave method. It is found that β-Ga2O3 has an indirect band gap with a conduction band minimum (CBM) at Γ point and a valence band maximum on the E line. The anisotropic optical properties are explained by the selection rule of the band-to-band transitions. On the other hand, the shape of the CBM is almost isotropic and, therefore, the observed electronic anisotropy in the n-type semiconducting state should not be attributed to the properties of a perfect lattice. The Burstein-Moss shift is discussed using the effect of several allowed transitions between the levels of the valence band and the CBM.  相似文献   

3.
The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16O18O16O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions.  相似文献   

4.
The pressure induced broadening of a series of pure rotational transitions of ozone have been measured as a function of temperature. Results of experiments are compared with calculations employing the complex semiclassical theory of Robert and Bonamy. This set of rotational transitions is the dominant feature of the millimeter and submillimeter ozone spectra to be measured in the upcoming EOS-MLS mission.  相似文献   

5.
[Co/Gd0.36Co0.64]4/Co multilayers with Co termination layer have been prepared by rf sputtering. They form macroscopic ferrimagnets with a compensation temperature (Tcomp) determined by the thickness ratio of the layers. In low fields the magnetization of Co and Gd–Co layers are along the axis of the applied field. Increasing field makes the moments of both the Co and Gd–Co layers deviate from the axis of the field giving rise to a transition into a twisted state. These magnetic transitions were studied by vibrating sample magnetometer (VSM), magneto-optic Kerr effect and magnetoresistance measurements at various temperatures. The nucleation and evolution of surface- and bulk-twisted magnetic states were also observed in these multilayers.  相似文献   

6.
Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an “in-plane easy-axis” phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed.  相似文献   

7.
This study is devoted to the problem of the electron-vibrational interaction in 4f-5d optical transitions. We analyze the room temperature experimental data on the vibronically assisted broad bands arising from the 4f-5d transitions in Ba, Ca, and Sr thiogallates doped with Eu2+ ions. An approximate simple expression is given for the shape function of the broad vibronic bands with allowance for the terms corresponding to the emission (absorption) from both ground and first excited vibrational levels. We estimate the vibronic coupling parameters and the Stokes shifts for these systems. The theoretical results are in a good agreement with the experimental data.  相似文献   

8.
This article is devoted to the problem of the electron-vibrational interaction in 4f-5d optical transitions and the calculation of the Stokes shift in thiogallate materials. Usually 4f-5d transitions give rise to the broad vibronic bands whose shape-function have been described and found, including terms corresponding to the emission (absorption) from both ground and first excited levels. This approximation can be applied not only at low temperatures, but at high temperatures also, including room temperature, when the most photoluminescence (PL) measurements are carried out. We estimate vibronic coupling parameters and make the fitting of experimental data for Ba, Ca and Sr thiogallates. The peculiarity of Stokes shift is discussed. The theoretical results are in good agreement with the experimental data.  相似文献   

9.
In a previous paper [Phys. Rev. A 72 (2005) 033415], it was shown that sub-Doppler cooling occurs in a standing-wave Raman scheme (SWRS) that can lead to reduced period optical lattices. These calculations are extended to allow for non-zero detuning of the Raman transitions. New physical phenomena are encountered, including cooling to non-zero velocities, combinations of Sisyphus and “corkscrew” polarization cooling, and somewhat unusual origins of the friction force. The calculations are carried out in a semi-classical approximation and a dressed state picture is introduced to aid in the interpretation of the results.  相似文献   

10.
Based on Q, P-dependent modification of the Born-Oppenheimer approximation (BOA), the ab initio theory of complex electronic ground state of superconductors is presented. As an illustrative example, application of the theory to superconductors of a different character and to the corresponding nonsuperconducting analogues is presented. It is shown that due to electron-phonon (EP) interactions, which drive system from adiabatic into antiadiabatic state, adiabatic translation symmetry is broken and system is stabilized in antiadiabatic state at distorted geometry with respect to adiabatic equilibrium high-symmetry structure. Stabilization effect in the antiadiabatic state is due to strong dependence of the electronic motion on the instantaneous nuclear kinetic energy, i.e. on the effect that is neglected on the adiabatic level within the BOA. At distorted geometry, antiadiabatic ground state is geometrically degenerated with fluxional nuclear configurations in the phonon modes that drive system into this state. It has been shown that until the system remains in antiadiabatic state, nonadiabatic polaron-renormalized phonon interactions are zero in the well-defined k-region of reciprocal lattice. This, along with geometric degeneracy of the antiadiabatic state, enables formation of mobile bipolarons that can move over lattice as supercarriers without dissipation. Moreover, it has been shown that due to EP interactions at transition into antiadiabatic state, k-dependent gap in one-electron spectrum has been opened. Gap opening is associated with shift of the original adiabatic Hartree-Fock orbital energies and with the k-dependent change in density of states of particular band(s) at Fermi level. Corrected one-particle spectrum enables to derive thermodynamic properties in full agreement with corresponding thermodynamic properties of superconductors.Based on the complex ab initio theory, it has been shown that Fröhlich's effective attractive electron-electron interaction term represents correction to electron correlation energy at transition from adiabatic into antiadiabatic state due to EP interactions. It has been shown that increased electron correlation is a consequence of stabilization of the system in superconducting electronic ground state, but not the reason for its formation.  相似文献   

11.
The ARPES of high-Tc cuprates and theoretical results of low-Fermi energy band structure fluctuation for different groups of superconductors indicate that electron coupling to pertinent phonon modes drive system from adiabatic into anti-adiabatic state (ω>EF). At these circumstances, not only Migdal-Eliashberg approximation is not valid, but basic adiabatic Born-Oppenheimer approximation (BOA) does not hold. At these circumstances, electronic structure has to be studied as explicitly dependent on instantaneous nuclear coordinates Q as well as on instantaneous nuclear momenta P.In the present paper—part I, it has been shown that Q, P-dependent modification of the BOA for ground electronic state can be derived by sequence of canonical transformations of the basis functions. The effect of nuclear coordinates and momenta on electronic structure is presented in the form of corrections to zero-, one- and two-particle terms of clamped nuclear Hamiltonian. In the anti-adiabatic state, correction to electronic ground state energy (zero-particle term correction) is negative and system can be stabilized in the anti-adiabatic state at distorted geometry with respect to adiabatic equilibrium structure and gap in one-particle spectrum of quasi-continuum states at Fermi level can be opened. Stabilization effect is solely the consequence of nuclear dynamics (P) that is crucial in anti-adiabatic state. It has been shown that nuclear dynamics also increases electron correlation until system at nuclear motion remains in a bound state. Corresponding corrections to electronic wave function are also specified.On the other hand, when system remains at vibration motion of nuclei in adiabatic state, the influence of nuclear dynamics (P-dependence) is negligible. In this case, all basic effects are covered through nuclear coordinates (Q-dependence) within the adiabatic BOA and standard results of solid-state (or molecular) physics are recovered.  相似文献   

12.
The magnetic, transport, and optical properties of electron-doped Ca1−xLaxMnO3−δ single crystals with x  ?0.12 were studied. The magnetic measurements show that in single crystals with x=0x=0 and 0.05 the G-type AFM phase with weak FM component is realized and in crystals with x=0.10x=0.10 and 0.12 the G- and C-type AFM phases coexist. The C-type magnetic structure arises at less concentration of La than in polycrystalline samples as a result of oxygen vacancies being additional source of electrons. Under magnetic transitions in the G- and C-type phases, resistivity and magnetoresistance of the doped single crystals have anomalies. Optical absorption in IR range indicates formation of a charge gap in crystals with x=0.10x=0.10 and 0.12 at appearance of the C-AFM and monoclinic phase with orbital/charge ordering. By comparing optical and transport properties, heterogeneous electronic state and its relation with heterogeneous magnetic state are shown.  相似文献   

13.
Ultrafast light-induced insulator-metal phase transitions (PT) in VO2 thin films was studied with use of a pump-probe technique. The theoretical and experimental study of PT kinetics shows that the PT could be realized via an intermediate state. The relaxation processes after optical pumping are dependent on pump energy. The excitonic controlled model for such type of PT is proposed. The main channel for the ultrafast light-induced PT is the resonant transition between excited states of correlated vibronic Wannier-Mott excitons (WME) in insulator phase and the unoccupied excited states in metallic phase. During this process an equilibrium local distortion occurred. According to the proposed model the experimental observation of the drastic temperature- and pump power- dependent relaxation processes could be interpreted.  相似文献   

14.
The molecular beam epitaxy is a powerful technology for integrating optoelectronic devices in standard Si microelectronics. The MBE growth of high speed germanium detectors is discussed. The necessary lattice accommodation between Si and Ge is realized by an ultra thin virtual substrate. Contact layers with very high doping concentration and very sharp transitions are grown with special doping strategies. As special growth method the differential epitaxy allows the growth of epitaxial layers in oxide windows.  相似文献   

15.
We present analytical and numerical study of high-order parametric resonance in a driven magneto-optical trap of cold atoms. We have obtained the general solutions for parametric resonance of arbitrary order. In particular, the amplitude and phase of atomic limit-cycle motion is expressed as a function of the modulation amplitude and frequency. Moreover, the atomic dynamics for high-order parametric resonance is investigated in terms of the Hamiltonian approach, which is useful in studying transitions between attractors. We find that the analytical results are in good agreement with the numerical calculations.  相似文献   

16.
Black-hole uniqueness is known to fail in higher dimensions, and the multiplicity of black hole phases leads to phase transitions physics in General Relativity. The black-hole black-string transition is a prime realization of such a system and its phase diagram has been the subject of considerable study in the last few years. The most surprising results seem to be the appearance of critical dimensions where the qualitative behavior of the system changes, and a novel kind of topology change. Recently, a full phase diagram was determined numerically, confirming earlier predictions for a merger of the black-hole and black-string phases and giving very strong evidence that the end-state of the Gregory–Laflamme instability is a black hole (in the dimension range 5?D?135?D?13). Here this progress is reviewed, illustrated with figures, put into a wider context, and the still open questions are listed.  相似文献   

17.
We report an infrared reflection spectroscopy study of La1/2Ca1/2MnO3 over a broad frequency range and temperature interval which covers the transitions from the high temperature paramagnetic to ferromagnetic and, upon further cooling, to antiferromagnetic phase. The structural phase transition, accompanied by a ferromagnetic ordering at TC=234 K, leads to enrichment of the phonon spectrum. A charge ordered antiferromagnetic insulating ground state develops below the Néel transition temperature TN=163 K. This is evidenced by the formation of charge density waves and opening of a gap with the magnitude of 2Δ0=(320±15) cm−1 in the excitation spectrum. Several of the infrared active phonons are found to exhibit anomalous frequency softening. The experimental data suggest coexistence of ferromagnetic and antiferromangetic phases at low temperatures.  相似文献   

18.
In this work we employ calorimetric and dielectric techniques to study the sequence of structural phase transitions (SPTs) of CsInF4 crystal in the temperature range from 450 to 250 K. Our results show three first-order SPTs. Based on these results and on direct interferometric observation of the domain patterns, we discuss the elastic state of CsInF4 phases.  相似文献   

19.
A phenomenological model for explaining the magnetic properties of MnAs nanocrystals embedded in GaAs is proposed. It is shown that experimental data of DC magnetization as a function of temperature, obtained according to zero-field-cooled and field-cooled protocols, can be understood assuming a transition of the system from a low temperature state in which very slow dynamics is observed (frozen state) to a high-temperature state in which dynamics is fast (quasi superparamagnetic state).  相似文献   

20.
The influence of grain size on the phase transitions of ferroelectric KNbO3 was studied by micro Raman spectroscopy. It was found that the three transitions observed are not sharp for small particles (∼50 μm), indicating that they do not behave like bulk particles. The transition temperatures depend on the size and all particles show hysteresis. From these experiments we have obtained some evidence that in small particles monodomains of the rhombohedral and orthorhombic phases coexist in a range of temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号