首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fiber-wireless (FiWi) access network is a prestigious architecture for next generation (NG) access network. NG access networks are proposed to provide high data rate, broadband multiple services, scalable bandwidth, and flexible communication for manifold wireless end-users (WEUs). In this paper, the FiWi access network is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul with data rate of 2.5 Gb/s and wireless fidelity-worldwide interoperability for microwave access (WiFi–WiMAX) technologies at the wireless front-end along a 50 m–5 km wireless links with data rate of 54–30 Mb/s, respectively. The performance of the optical backhaul and the wireless front-end, in the proposed FiWi access network, has been evaluated in terms of bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR) of the physical (PHY) layer. The scalability of the optical backhaul based on maximum split ratio of 1/32 for each wavelength channel and a fiber length of 24 km from the central office (CO) to the access point (AP) is analyzed with bit error rate (BER) of 10−9.  相似文献   

2.
This paper employs dual-output Mach–Zehnder Modulator (MZM) for optical access networks without optical filters. Light waves generated from multiple laser sources are multiplexed and fed into dual-output MZM. Biasing the dual-output MZM at null point generates central carriers in one output port and first-order sidebands in another output port. Reflective semiconductor optical amplifier modulates both the central carriers and sidebands with wired and wireless data, respectively. The modulated optical signals are combined by polarization beam splitter and transmitted through 25-km single-mode fiber. The performance of the proposed scheme is proved by clear eye-diagrams and great bit error rate (BER) curves. Moreover, the power penalty at the BER of 10-9 is less than 1 dB for both wired and wireless signals. Therefore, the proposed system simultaneously transmits wired and wireless signals.  相似文献   

3.
The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.  相似文献   

4.
Abstract

A novel full duplex fiber wireless link providing alternative wired and 60-GHz wireless access is proposed based on a polarization orthogonal dual-tone optical millimeter-wave signal. In a hybrid optical network unit, the downlink optical signal can be decomposed as a single-sideband optical millimeter-wave signal (baseband optical signal) for wireless (wired) access by a polarization controller and polarization beam splitter. The uplink optical carrier abstracted from the downlink optical signal makes the hybrid optical network unit free from the optical source. The simulation results show that both downlinks and uplinks for either wired or wireless access can maintain quite good performance over 60 km of fiber.  相似文献   

5.
Abstract

A full-duplex link implementing alternative wired and wireless access for wavelength-division multiplexing passive optical network is proposed with the uniformed three-tone converged optical signal, which provides a wired or wireless downlink access signal alternatively and an uplink optical carrier. The uplink optical carrier reversed by the converged optical signal makes the hybrid optical node unit free from the optical source. The simulation results show that the full-duplex link with a 10-Gb/s 16-quadrature amplitude modulation (16-QAM) downstream and 5 Gb/s binary upstream can provide both wired access with a bit-error rate below 10?9 and radio-over-fiber-based wireless access with a bit-error rate below 10?7 over 40 km of fiber without an optical source and optical amplifier in the hybrid optical node unit.  相似文献   

6.
We experimentally investigated the performance degradation due to broadband light source (BLS) polarization in wavelength-division multiplexing-passive optical network systems based on a wavelength-locked Fabry-Perot laser diode. The results showed that the BLS polarization difference between two polarization states should be less than 3 dB, and its injection power should be greater than −18 dBm for a received-power penalty of less than 1 dB.  相似文献   

7.
In this paper, it is shown that at a high bit rate of 80-Gb/s alternate polarization of adjacent bits in a Wavelength Division Multiplexed (WDM) transmission link improves the system performance in terms of improved Q factor and minimum bit error rate (BER). Alternate Polarization Return to Zero (al-PRZ) further suppresses the non-linear effects at higher power levels of 25 dBm per channel and also improves the transmission length to 640 km for a N × 80-Gb/s WDM system and hence results in an improvement of BER to 10−20.  相似文献   

8.
In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10−9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10−9.  相似文献   

9.
The concept of the all-fiberized multi-wavelength regenerator is analyzed, and the design methodology for operation at 40 Gb/s is presented. The specific methodology has been applied in the past for the experimental proof-of-principle of the technique, but it has never been reported in detail. The regenerator is based on a strong dispersion map that is implemented using alternating dispersion compensating fibers (DCF) and single-mode fibers (SMF), and minimizes the nonlinear interaction between the wavelength-division multiplexing (WDM) channels. The optimized regenerator design with + 0.86 ps/nm/km average dispersion of the nonlinear fiber section is further investigated. The specific design is capable of simultaneously processing five WDM channels with 800 GHz channel spacing and providing Q-factor improvement higher than 1 dB for each channel. The cascadeability of the regenerator is also indicated using a 6-node metropolitan network simulation model.  相似文献   

10.
In this paper, a spectral efficient hybrid wireless optical broadband access network (WOBAN) is proposed and demonstrated based on the transmission of wireless multi-input multi-output orthogonal frequency division multiplexing (MIMO OFDM) signals over wavelength division multiplexing passive optical network (WDM PON). By using radio over fiber (ROF) techniques, the optical fiber is well adapted to propagate multiple wireless services having different carrier frequencies. It is a known fact that multiple wireless signals having the same carrier frequency cannot propagate over a single optical fiber at the same time, such as MIMO signals feeding multiple antennas in fiber wireless (FiWi) system. A novel optical single-sideband frequency translation technique is designed and simulated to solve this problem. This technique allows four pairs of wireless MIMO OFDM signals with the same carrier frequency for each pair to be transmitted over a single optical fiber by using one optical source per wavelength. The crosstalk between the different MIMO channels with the same frequency is eliminated, since each channel is upconverted on specified wavelength with enough channel spacing between them. Also the maximum crosstalk level between the different MIMO channels with different frequencies is very low around ?76 dB. The physical layer performance of the proposed WOBAN is analyzed in terms of the bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR). The proposed WOBAN achieves 7.68 Gb/s data rate for 20 km for the optical back-end and 240 Mb/s for the outdoor wireless front-end.  相似文献   

11.
A soft glass dual core polarization splitter based on highly birefringent photonic crystal fiber (PCF) is proposed and the full vector finite element method (FEM) is employed to analyze the impacts of structural parameters on birefringence and the coupling length, and simulation results show that high birefringence on the order of 10−2 can be obtained at 1.55 μm, moreover, hole size, hole pitch and elliptic ratio all affect birefringence and the coupling length. Based on these results, the PCF's structure is optimized to realize a polarization splitter of 282 μm whose largest extinction ratio is around −45.42 dB at 1.55 μm. Meanwhile, the bandwidth at the extinction ratio of −10 dB is about 90 nm, and around 32 nm at −20 dB.  相似文献   

12.
A centralized seeding source based loopback WDM-PON is fundamentally limited by Rayleigh backscattering (RB) noise. Here a novel modulation format, called as Coded RZ (CoRZ), is proposed to enhance the system performance in the presence of RB for RSOA based reflective access networks. The result shows that the proposed technique can be effectively improved the tolerance of signal-to-crosstalk ratio (SCR) by about 8 dB and 2.5 dB from conventional NRZ and RZ modulation formats respectively to maintain power penalty ≤ 2 dB.  相似文献   

13.
In this paper, a new bidirectional wavelength division multiplexing radio-over-fiber (WDM-RoF) using Subcarrier Multiplexing/Amplitude Shift Keying (SCM/ASK) is proposed which shares the same wavelengths for both up-link and down-link. A bidirectional reflective filter (BRF) is utilized in the upstream link to provide a reliable bidirectional optical channel. WDM is used to further increase the capacity of system. Simulation of the proposed scheme demonstrates 1 Gbps down- and up-link data stream for 16 channels over the length of 25 km with acceptable Q-factor (>6 dB).  相似文献   

14.
This paper proposes and numerically investigates a novel high-speed wavelength-division-multiplexed passive optical network (WDM-PON) architecture with colorless user terminals based on the use of orthogonal modulation scheme for downstream and upstream transmission. The 40 Gb/s optical frequency shift keyed (FSK) downstream data is generated based on carrier-suppressed modulation. At optical network unit, the downstream signal is directly re-modulated by the 2.5 Gb/s up-stream data and sent back with the same fiber. Error free transmission over 20 km single mode fiber can be observed for both downstream and upstream signals in our simulation. Power budget, tolerance of channel spacing, FSK tone spacing and dispersion are all investigated. Factors that might influence the stability of the system are analyzed and an extended hybrid wired/wireless version of the scheme is also given.  相似文献   

15.
In order to meet the ultra high speed and ultra long-haul transmission distance in wavelength division multiplexing (WDM) systems, the nonlinear impairment affecting the overall spectral efficiency and system performance should be minimized. This paper proposes a strategy to mitigate the four-wave mixing (FWM) effect in WDM system. The strategy determines the effect of both single and combined effects of second, third, and fourth optimization priority parameters such as fiber length, input power, dispersion, channel spacing, and effective area on FWM power. A comparison study was made under different types of optical fiber such as single-mode fiber (SMF), dispersion shifted fiber, non-zero dispersion fiber, and non-zero dispersion shifted fiber. In addition, the system performance in term of bit-error-rate was calculated in the case of single priority (impact of effective area) and combined priority (impact of effective area, input power, fiber length and channel spacing). The results show that the FWM effect was reduced based on the transmission parameters order of optimization, i.e., priority selection proposed. Moreover, the results indicated that increasing sequentially the effective area, fiber length; channel spacing and decreasing the input power provide the most significant sequence in suppressing the effects of FWM. This priority sequence brought the suppression ratio to approximately 26.3% in SMF, which suppressed the FWM effects up to −50 dBm. In term of BER; the combined priority introduces improvement in BER of 2.31 × 10−25 in comparison with single priority that has value of BER 4 × 10−14. Finally, this work suggests that the proposed priority-based parameter optimization strategy is an ideal solution for optimum performance of WDM system.  相似文献   

16.
A design of octagonal photonic crystal fiber (OPCF) with F-doped elliptical hole core is proposed. The proposed design is simulated through an full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Numerical results show that the designed OPCF has the ultra-flattened dispersion of 0 ± 0.4 ps/(nm km) from 1.34 μm to 1.72 μm (380 nm band) which covers S, C and L communication bands, a low confinement loss of less than 10−7 dB/m in the same wavelength range, and the corresponding birefringence and nonlinear coefficient are about 2.12 × 10−2 and 50.67 W−1 km−1 at 1.55 μm, respectively. The proposed OPCF may have great potential applications in super-continuum (SC) generation, dispersion compensation, polarization maintaining and so on.  相似文献   

17.
A novel MI-insensitive and filterless frequency octupling scheme based on two parallel dual-parallel Mach–Zehnder modulators (DP-MZMs) is proposed. The proposed scheme is not sensitive to modulation index and relatively strong MMW signal with good radio frequency spurious suppression ratio (RFSSR) can be obtained without strict requirement on modulation index. Filterless feature makes the scheme quite suitable for wavelength division multiplexing (WDM) applications. For verification, a 60 GHz millimeter wave with 44 dB RFSSR is generated from a 7.5 GHz radio frequency wave by simulation. Performance of the proposed scheme has been characterized under different conditions including DC-bias drifts of MZMs, different amplitudes of RF inputs and different extinction ratios of MZMs.  相似文献   

18.
We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about −30 dB, and the minimal drop loss is about 2 dB.  相似文献   

19.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

20.
Reconfigurable multi-channel optical power splitter is proposed and its optical properties are calculated. The device can dynamically reconfigure the number of splitting channels by providing programmed refractive index modulations on a multimode interference (MMI) waveguide. A reconfigurable 3-channel optical power splitter is designed to work as 1 × 1, 1 × 2 or 1 × 3 optical power splitter depending on the state of the heat electrodes using thermo-optic modulation, and the input light can be distributed to three output channels with sequential orders. The device can work in the whole C-band (1530-1565 nm) with extinction ratio better than −29.0 dB, excess loss better than −0.45 dB, imbalance better than 0.08 dB and polarization dependent loss (PDL) better than 0.14 dB. The design conception is scalable to a multi-channel splitting-on-demand optical power splitter which can divide input light to 1, 2, …, N output channels equally by using the 3-channel reconfigurable optical power splitter as a building block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号