首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining the advantages of diode-end-pumped Nd: YVO4 and diode-side-pumped Nd: YAG amplifiers, a high average power and high beam quality picosecond laser is designed. The system delivers a picosecond laser with average power of 43.4 W and good beam quality of M2 < 1.7. By focusing the high power picosecond laser in LBO crystal, 532 nm green laser with maximal power of 20.8 W is generated and the conversion efficiency of second-harmonic generation reaches 56.4% when 17.7 W green laser obtained from the fundamental frequency laser with power of 31.4 W and beam quality of M2 < 1.25.  相似文献   

2.
Pulsed UV lasers at the wavelengths of 374 and 280 nm are realized by cascaded second harmonic generation (SHG) and sum frequency generation (SFG) processes using a Nd:YAG laser at 1123 nm. The Nd:YAG laser is longitudinally pumped and passively Q-switched, and it has a high peak power of 3.2 kW. The UV peak powers at 280 and 374 nm are 100 and 310 W, with pulse lengths of 6 and 8 ns, respectively. Spectral broadening of 374 nm laser by stimulated Raman scattering is studied in single mode pure silica core UV fiber. Realizations of UV lasers enabling compact design at 280 and 374 nm wavelengths are demonstrated.  相似文献   

3.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

4.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

5.
We report, for the first time, an efficient intra-cavity second-harmonic generation (SHG) at 1084 nm in a nonlinear optical crystal, BiB3O6(BIBO) at the direction of (θ?) = (170.1°, 90°), performed with a LD end-pumped cw Nd:YVO4 laser. With 590 mW diode pump power, a continuous-wave (cw) SHG output power of 19 mW at 542 nm yellow-green color has been obtained using a 1.5 mm-thick BIBO crystal. The optical conversion efficiency was 3.22%. It was found that the output wavelength could be 532 nm, 537 nm or 542 nm according to regulating the angle of BIBO.  相似文献   

6.
We demonstrate the generation of 515 nm green laser with diode-pumped Yb:YAG thin disk by intracavity frequency doubling of type-I phase-matched LiB3O5(LBO) in a V-type cavity at room temperature. A continuous-wave (CW) output power of 4.44 W at 515 nm was obtained. Optical-optical efficiency of 515 nm green laser is 14.6%. The fluctuation of green laser was 1.6% at the maximum output power in 0.5 h. Thermal lensing effects in Yb:YAG thin disk are investigated too.  相似文献   

7.
We have demonstrated a diode-pumped intra-cavity frequency doubling Nd:LuVO4 laser operating at 916 nm with a Z-folded cavity. A 10-mm long LBO crystal, cut for critical type I phase matching at 912 nm, is used for the experiment. A maximum output power of 330 mW at 458 nm has been achieved at pump power of 22 W. The optical-to-optical conversion efficiency and slope efficiency is 1.5% and 2.3%, respectively. The power instability at the maximum output power in 30 min is better than 3%.  相似文献   

8.
We demonstrate a low threshold operation of a KTP-based intracavity optical parametric oscillator, emitting at 1573 nm, driven by a cw diode-end-pumped actively Q-switched Nd:YVO4 laser. Diode-pump threshold around 0.86 W is achieved, which, to the best of our knowledge, is the lowest one under the similar experimental conditions. Owning to the efficient cavity-dumping effect, a signal pulse width as short as 1.4 ns and peak power higher than 3 kW is obtained, at the incident diode-pump power of 1.3 W and A-O modulating frequency of 9 kHz. Moreover, threshold characteristic for the IOPO is also studied, which is in well agreement with the experimental results.  相似文献   

9.
We present a comprehensive model to describe the optic-thermal coupling in the diode pumped solid-state lasers (DPSSL). The thermal transition of particles at the upper laser level leads the heat-generation of laser crystals to depend on shape of the laser beam, while the laser field is also influenced by the temperature because of the thermal excitation of doped particles among various Stark levels. These effects, together with the usual thermal-optic effect that induces a fluctuation of the refraction index by an inhomogeneous temperature distribution, cause a complicated coupling between the laser field and the temperature field. We show that the optic-thermal coupling plays an important role in high-power DPSSL with larger size beam. That effect may yield a self-compensation for the thermal lens and improve the beam quality.  相似文献   

10.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

11.
A high average power picosecond laser amplification system with diode-end-pumped Nd:YVO4 and diode-side-pumped Nd:YAG is described. Laser with power up to 92.7 W, repetition frequency of 73.3 MHz, pulse duration of 26.5 ps, and beam quality of M2 < 3.5 is generated in the amplification system. Thermal-birefringence-induced depolarization in the Nd:YAG rod laser head amplifier is measured to be 21.9 W though birefringence compensation is performed.  相似文献   

12.
We report on generation of 946 nm laser pulses of a few nanosecond duration and up to 3.7 kW peak power from a compact diode-pumped passively Q-switched Nd:YAG laser. This power is 2.5 times as much as what previously has been obtained from this type of a laser. The short pulses with the record high peak power may be particularly attractive for laser range finding type applications.  相似文献   

13.
We report a stable high power and high beam quality diode-side-pumped CW green laser from intracavity frequency doubled Nd:YAG laser with LBO crystal. By using a advanced resonator, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously, which are favorable for high power and high beam quality CW green laser generation. The green laser delivered a maximum 532 nm output power of 40 W. The corresponding optical-to-optical conversion efficiency and electrical-to-optical conversion efficiency were 8.6% and 5.0%, respectively. Under 532 nm output power of 34 W, the beam quality factor was measured to be 1.6.  相似文献   

14.
In this paper, 28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser using a CsLiB6O10 crystal was reported. A conversion efficiency of 24.7% was obtained.  相似文献   

15.
LD side-pumped dual interconnected V-type quasi-continuous wave green laser has been demonstrated. The two Nd:YAG modules were placed in a plane-concave V-type resonator and a plane-concave straight cavity formed two stable operation beam of the 1064-nm fundamental frequency laser. Through acousto-optic Q-switched and frequency doubling crystal, two double-frequency laser beams arrived at the folded flat mirror, which were unidirectional output by the folded flat mirror at the end. As the pumped current was 50 A, the 532 nm green laser maximum average output power of 206 W at a repetition of 22.4 kHz was achieved with a pulse width of 201 ns and the largest single pulse energy of 9.2 mJ, corresponding to a peak power of 45.8 kW and a double frequency efficiency of 60.2%.  相似文献   

16.
The use of a Free-Electron Laser (FEL) allows the study of (non)linear optical properties of materials over unsurpassed large spectral intervals. As an example, we report on the use of a FEL as the infrared source in spectroscopic infrared-visible Sum-Frequency Generation (SFG). Employing the extremely wide tunability of the Free-Electron Laser for Infrared eXperiments (FELIX) at Rijnhuizen, we have studied the frequency dependence of the nonlinear susceptibility for sumfrequency generation in gallium phosphide between 20 and 32 m in great detail. We have developed a shortpulse visible laser system that is highly synchronous with FELIX thereby creating a two-color setup that can be broadly applied. Resonantly enhanced SFG in alphaquartz has been used to study the relative timing stability of FELIX and the synchronized picosecond-laser system.Paper presented at the 129th WE-Hearaeus-Seminar on Surface studies by Nonlinear Laser Spectroscopies, Kassel, Germany, May 30 to June 1, 1994  相似文献   

17.
An end pumped Nd:YAP laser at 1341 nm is actively mode locked and passively Q-switched. Pumping was done with a pulsed high power laser diode with maximum power 425 W. V3+:YAG with 61% initial transmission served as saturable absorber, and an acousto-optic modulator is used for active mode locking. The output pulse train with 69 ns duration has a total energy of 3.2 mJ with ±4% shot-to-shot fluctuation. The peak output energy of a single mode locked pulse is 0.25 mJ. The pulse duration of a single mode locked pulse is less than 800 ps. The output laser beam is nearly diffraction limited with 1.6 mm diameter, and beam propagation factor M2 about 1.3.  相似文献   

18.
A diode-pumped Master Oscillator Power Amplifier (MOPA) laser system based on cryogenic cooled Yb:YAG has been designed, developed and its output performance characterised. The laser system consists of a fibre oscillator, an active mirror regenerative amplifier and a four pass main amplifier. 2.4 mJ, 10 ns, 100 Hz seed pulses from the fibre oscillator/regenerative amplifier arrangement were amplified up to pulse energies of over 200 mJ by using the four pass main amplifier arrangement. As a further study we have obtained an increased slope efficiency of 40% and an optical-to-optical efficiency of 30% using a pinhole vacuum spatial filter/image relay for laser mode control. With 1.8 mJ input seed pulses, output pulse energies of around 150 mJ were achieved.  相似文献   

19.
We demonstrate a compact efficient diode-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YVO4 blue laser. The optimum polarization state is experimentally investigated to optimize the output performance. Greater than 280 mW of 447-nm average power at a repetition rate of 25 kHz was generated with a 15-W diode pump power. At 25 kHz, the pulse width is shorter than 15 ns and the peak power is higher than 800 W.  相似文献   

20.
A frequency-doubled laser diode system for generation of blue–UV light is described. The system is based on an external-cavity high-power laser diode with double feedback from the zeroth and the first orders of a diffraction grating. Light at 405 nm is generated in a single-pass configuration using periodically poled KTiOPO4. We show that the double grating feedback improves the second harmonic conversion efficiency by several orders of magnitude as compared to the freely running laser. The conversion efficiency may be improved further such that higher second-harmonic powers may be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号