首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear responses and optical limiting performance of a dye type acid, called fast green FCF, are investigated under irradiation of 35 mW continuous wave He-Ne Laser. The second order refractive index and nonlinear absorption coefficient are measured by use of z-Scan technique. The optical limiting behavior is investigated by transmission measurement through the sample. Linear absorption coefficient (α), nonlinear absorption coefficient (β) and second order refractive index (n2) of fast green FCF are measured at different concentrations.  相似文献   

2.
The linear and the third-order nonlinear optical absorption coefficients and refractive index changes in a modulation-doped asymmetric double quantum well are studied theoretically. The electron energy levels and the envelope wave functions in this structure are calculated by the Schrödinger and Poisson equations self-consistently in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated as a function of right-well width (Lw2) of asymmetric double quantum well. Our results show that the total absorption coefficients and refractive index changes shift toward higher energies as the right-well width decreases. In addition, the total optical absorption coefficients and refractive index changes is strongly dependent on the incident optical intensity.  相似文献   

3.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

4.
The third-order optical nonlinear refractive properties of InAs/GaAs quantum dots grown by molecular beam epitaxy have been measured using the reflection Z-scan technique at above-bandgap energy. The nonlinear refractive index and nonlinear absorption index of the InAs/GaAs quantum dots were determined for wavelengths from 740 to 777 nm. The measured results are compared with the nonlinear refractive response of several typical III-V group semiconductor materials. The corresponding mechanisms responsible for the large nonlinear response are discussed.  相似文献   

5.
The linear and nonlinear optical absorption coefficients and refractive index changes are obtained by using the compact density-matrix approach and an iterative procedure. With typical semiconducting GaAs materials, the linear, third-order nonlinear, total optical absorption coefficients and the optical refractive index have been examined. We find that the polaron effect has an important influence on the linear, third-order nonlinear, and total absorption coefficients as well as the refractive index changes.  相似文献   

6.
The principal refractive indices of L-lysine monohydrochloride dihydrate (L-LMHCl) single crystal for different wavelengths were measured by minimum deviation method at room temperature. The experimental values of refractive indices fit well with the theoretical Cauchy's equations. The birefringence and the crossing angle between the optical axes were calculated. The parameters of Sellmeier's single term dispersion equation were determined by least square method. A simple interferometric technique was used to observe the interference patterns along the optic plane and to qualitatively analyze the optical homogeneity of the grown crystal. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were also determined using Z-scan technique. The piezoelectric resonance in dielectric dispersions was observed at room temperature.  相似文献   

7.
The third order nonlinear optical properties of Rhodamine6G (Rh6G) doped silica and polymeric samples have been investigated using single beam z-scan technique under excitation by the second harmonic of Nd:YAG laser beam (532 nm). The nonlinear refractive index, nonlinear absorption coefficient, real and imaginary parts of third order nonlinear susceptibility in the samples of silica and poly-methylmethacrylate (PMMA) matrices are measured. Thermal contribution to the nonlinear refractive index in case of undoped silica samples has been calculated in order to have better accuracy of the material response contribution to third order nonlinearity. The comparative study of the optical limiting performance of Rh6G doped silica and polymeric samples show that Rh6G doped silica is relatively superior for optical limiting applications.  相似文献   

8.
The third-order nonlinear optical properties of chalcone derivatives have been studied using the single beam Z-scan technique. The dependence of χ(3) on different donor and acceptor type substituents demonstrates the electronic nonlinearity of compounds. The largest value of nonlinear refractive index, n2, measured for a high electron donor substituted molecule is −2.033 × 10−11 esu. These molecules exhibit a strong two-photon absorption and interesting optical limiting of nanosecond laser pulses at 532 nm.  相似文献   

9.
The third order nonlinear optical properties of acid blue 29 solutions have been studied using Z-scan technique. Experiments are performed using a CW He–Ne laser at 632.8 nm wavelength and 3 mW power. The linear absorption coefficient α0, nonlinear absorption coefficient β, nonlinear refractive index n2, Re χ3, and Im χ3 are measured at three different concentrations. Our results show that higher concentration gives better nonlinear optical properties. Also, it was found that there is an increasing trend in the value of the nonlinear refractive index n2 as the concentration increases.  相似文献   

10.
In this work electronic structure, the linear and the third-order nonlinear refractive index changes as well as optical absorption coefficients of a two-dimensional hexagonal quantum dot are investigated. Energy eigenvalues and eigenfunctions of the system are calculated by the matrix diagonalization technique, and optical properties are also obtained using the compact density matrix approach. As our results indicate, both the dot size and the confinement potential have a great influence on the intersubband energy intervals, the transition probability and consequently, the linear and the third-order nonlinear refractive index changes and optical absorption coefficients.  相似文献   

11.
Thin films of manganese (III) chloride 5,10,15,20-tetraphenyl-21H,23H-porphine (MnTPPCl) with different film thickness were deposited by an evaporation technique. Some optical constants were calculated for these films at a thickness of 110, 220 and 330 nm and annealing temperature of 373 and 437 K. IR spectrum demonstrating that the thermal evaporation method is a good one to acquire undissociated and stoichiometric MnTPPCl films. Our perceptions demonstrate that the mechanism of the optical absorption obeys with the indirect transition. It was found that the energy gap, Eg, affected by the film thickness and annealing. Dispersion of the refractive index is described using single oscillator model. Dispersion parameters are calculated as a function of the film thickness and annealing temperature. In addition, the third-order nonlinear susceptibility, χ(3), and the nonlinear refractive index, n2, were calculated.  相似文献   

12.
Series of ternary glass systems namely, Na2O, B2O3, and RO (R=Ba or Mg) doped with TiO2 are synthesized. The present glasses are dictated by requirement for a small refractive index and a small nonlinear coefficient needed for waveguide and laser fabrication requirements. The effect of MgO and BaO as alkaline earth metals on the optical properties of the glass systems is investigated. The dependence of the refractive index and extinction coefficient dispersion curves on composition is carried out over a wavelength range of 0.3-. Applying a genetic algorithm technique, the parameters of Sellmeier dispersion formula that fit index data to accuracy consistent well with the measurements are given. The zero material dispersion-wavelength (ZMDW) and group velocity are also determined using the refractive index data. The Fermi level is calculated exploiting the extinction coefficient dispersion curves. The absorption coefficient, both direct and indirect optical energy gaps, and Urbach energy are evaluated using the absorption edge calculations. The different factors that play a role for controlling the refractive indices such as coordination number, electronic polarizability, field strength of cations, bridging and nonbridging oxygen, and optical basicity are discussed in accordance with the obtained index data. IR spectroscopy is used as a structural probe of the nearest-neighbor environment in the glass network.  相似文献   

13.
2-Furoic acid (2FA), an organic third order nonlinear optical single crystal, has been synthesized and grown successfully by slow solvent evaporation technique. The space group and lattice parameters of the grown crystals were obtained by single crystal X-ray diffraction analysis. The presence of the functional groups was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. Optical absorption studies reveal low absorption in the UV and visible regions and the UV cut-off wavelength is found to be at 240 nm. The thermal stability of the material examined by TGA analysis, reveals that the material is thermally stable up to 130 °C. The third order nonlinear optical parameters (nonlinear refractive index, nonlinear absorption coefficient and real and imaginary parts of the third order nonlinear optical susceptibility) were derived by Z-scan technique. This reveals that the crystal has a negative refractive index, which indicates the defocusing nature of the material.  相似文献   

14.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

15.
《Physics letters. A》2006,359(5):467-470
Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this Letter the spectral characteristics and the nonlinear optical properties of the dye night blue are studied. The spectral characteristics of night blue dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique [S.-B., Mansoor, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26 (1990) 760], by exciting with He–Ne laser. The results obtained are intercompared. Both the samples of dye night blue show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.  相似文献   

16.
We present the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of tris(acetylacetonato)manganese(III) solution, using Z-scan technique with a low-power continuous-wave laser at 514 nm. We demonstrate that the light-induced nonlinear refractive index variation leads to strong self-focusing and self-defocusing. A pump and probe technique was used to investigate the cause of nonlinearity. Furthermore, the nonlinear absorption effect was utilized to demonstrate all optical switching.  相似文献   

17.
We present the results from investigations of the nonlinear properties of Congo red solutions using Z-scan technique with a continuous wave argon ion laser at 514 nm. The magnitude and sign of the third-order nonlinear refractive index n2 of aqueous solution of Congo red were determined. The nonlinear refractive index was found to vary with concentration. Third-order nonlinearity is dominated by nonlinear refractive index, which leads to strong self-defocusing and self diffraction in the samples studied. A pump and probe technique was used to investigate the origin of nonlinearity. Furthermore the nonlinear refractive index effect was utilized to demonstrate all optical switching. The optical limiting behavior based on nonlinear refractive index was investigated.  相似文献   

18.
The optical and acoustic properties of tellurite glasses in the system TeO2/ZrO2/WO3 have been investigated. The refractive index at different wavelengths and the optical spectra of the glasses have been measured. From the refractive index and absorption edge studies for prepared glasses, the optical parameter viz; optical band gap (Eopt), Urbach energy, (ΔE), dispersion energy, Ed, and the average oscillator energy, E0, have been calculated. Sound velocities were measured by pulse echo technique. From these velocities and densities values, various elastic moduli were calculated. The variations in the refractive index, optical energy gap and elastic moduli with WO3 content have been discussed in terms of the glass structure. Quantitatively, we used the bond compression model for analyzing the room temperature elastic moduli data. By calculating the number of bonds per unit volume, the average stretching force constant, and the average ring size we can extract valuable information about the structure of the present glasses.  相似文献   

19.
We report the investigations of thermally induced third-order nonlinear optical and optical limiting characterizations for various concentrations of acid blue 40 dye in N,N-Dimethyl Formamide, studied by employing z-scan technique under cw He–Ne laser irradiation at 633 nm wavelength. The samples exhibited nonlinear absorption and nonlinear refraction under the experimental conditions. For lower concentration, the samples display both saturable absorption (SA) and reverse saturable absorption (RSA); whereas with increase in concentration, RSA behaviour prevails. The estimated values of the effective coefficients of nonlinear absorption βeff, nonlinear refraction n2 and third-order nonlinear susceptibility χ(3) were found to be of the order of 10?2 cm/W, 10?4 esu and 10?6 esu respectively. Multiple diffraction rings were observed when the samples were exposed to laser beam due to refractive index change and thermal lensing. The effect of concentration and the laser intensity on the self-diffraction ring patterns was studied experimentally. The acid blue 40 dye also exhibited strong optical limiting properties under cw excitation and reverse saturable absorption is found to be the dominant nonlinear optical process leading to the observed nonlinear behaviour.  相似文献   

20.
An investigation of third-order nonlinear optical characterization of newly synthesized conjugated benzodioxal derivatives has been done by using nanosecond Z-scan technique at 532 nm. The molecules demonstrate self-defocusing effect with intensity dependent refractive index (n2) of the order of 10−14 cm2/W. The measured molecular TPA cross-section is ranging from 2.47 ×10−47 cm4 s/photon to 6.00 cm4 s/photon. Their input-output curves indicate that there is a clear optical power limiting behavior with the limiting threshold in the range 125-181 μJ. The main factor to exhibit the observed nonlinearity in these molecules is the presence of charge donor and acceptor groups. The increased conjugation length increases the nonlinear refraction and increased electron density enhances the nonlinear absorption. The molecules exhibit good nonlinear optical properties, comparable to those of regular azoaromatic compounds. Therefore, the molecules investigated here are promising candidates for optical power limiting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号